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C. elegans and the OpenWorm Project

OpenWorm aims to build the first comprehensive computational model 
of the Caenorhabditis elegans (C. elegans), a 1mm transparent 
nematode worm. With only a thousand cells, it solves basic problems 
such as feeding, mate-finding and predator avoidance. Despite being 
extremely well studied in biology, this organism still eludes a deep, 
principled understanding of its biology.

C. elegans







C. elegans has exactly 302 neurons with 3000+ synaptic connections

A connectome is a neural network wiring diagram



Neuron and synapse



The C. elegans connectome graph 
(from Bargmann and Marder)

Shortest path lengths from sensor to muscle:
min=1, max=7
mean=4, median=4.4



Background

• Although much about the C. elegans connectome is known, including 
the synaptic types, connectivity, and neurotransmitters, the 
functional behavior of synapses and neurons is largely unknown.
• There are efforts to discover this, using luminescent neurons for example.

• Can an artificial C. elegans neural network be “programmed” to 
behave authentically? E.g. sensory-motor locomotion, etc.

• With 302 neurons and thousands of synapses, training the entire 
network is daunting; for this reason efforts either reduce, simplify, or 
augment the network to get it to perform.



Tasks

• Task 1: using the C. elegans connectome, train the synapse weights to 
perform feasible input-output sequences.

• Task 2: train the connectome to react to the “light touch” stimulation 
by starting to undulate.

• Initial simplifications:
• “Perceptron” (artificial neural network) neurons.

• Single connection between neurons (many are multiple in connectome).

• Gap-junction synapses behave the same as gap synapses.

• GABA is the only inhibitory neurotransmitter

• Synapse signals propagate uniformly in a step-by-step manner.



Neuron is activated by weighted sum of 
synaptic inputs



Neuron activation function: logistic sigmoid



Basic scheme: Genetic algorithm

• In the computer science field of artificial intelligence, genetic 
algorithm is a search heuristic that mimics the process of natural 
selection. This heuristic is routinely used to generate useful solutions 
to optimization and search problems.
• Population members contain a set of “genes”, which are dimensions in search 

space.

• Mutation randomly varies genes.

• Crossover “mates” two parent population members, combining their genes 
into a child.

• Survival is based on a “fitness” function.

• Population evolves over generations.



Algorithm tweaks for C. elegans training

• Also uses “harmonization”, a hill-climbing technique that randomly 
selects synapse paths in the network to optimize as ensembles. Since 
C. elegans has relatively shallow paths between sensory and motor 
neurons, the idea is to optimize these as sets. 

• The crossover function selects random neurons from parent networks 
to place into the child, but neurons connected to a selected neuron 
probabilistically “stick” to it. The effect is to transfer chains of 
optimized neighboring neurons into the child. 



Harmonization: hill-climbing optimization

neuron
1

neuron
2

neuron
3

synapse1

synapse2

Test these combinations for fitness improvement:
1. synapse1 + random/synapse 2 + random
2. synapse1 + random/synapse 2 - random
3. synapse1 - random/synapse 2 + random
4. synapse1 – random/synapse 2 - random



Harmonization: crossover using optimized 
chains
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Child network

Copy entire chain



More training details

• Population size=500, offspring per generation=250

• Generations: variable for Task 1, 250 for Task 2.

• Random selection for crossover and optimization.
• Crossover probability = 80%

• Optimization consists of mutation and harmonization.

• Mutation rate = 5%, randomizes synapse weights.

• Elitism: only fittest kept per generation.



Task 1 method

1. Create a randomly weighted network from the connectome.

2. Feed either a random or cyclical input pattern sequences into the 
network and record the output sequences.

3. Train other randomly-weighted networks to perform the same 
input-output sequences.

4. Fitness is based on difference between outputs where an error is a 
difference of .05 or more. 



Simultaneous training of two ten-length sensory-motor sequences

0

100

200

300

400

500

600

700

800

900

0
2

5
5

0
7

5
1

0
0

1
2

5
1

5
0

1
7

5
2

0
0

2
2

5
2

5
0

2
7

5
3

0
0

3
2

5
3

5
0

3
7

5
4

0
0

4
2

5
4

5
0

4
7

5
5

0
0

5
2

5
5

5
0

5
7

5
6

0
0

6
2

5
6

5
0

6
7

5
7

0
0

7
2

5
7

5
0

7
7

5
8

0
0

8
2

5
8

5
0

8
7

5
9

0
0

9
2

5
9

5
0

9
7

5
1

0
0

0
1

0
2

5
1

0
5

0
1

0
7

5
1

1
0

0
1

1
2

5
1

1
5

0
1

1
7

5
1

2
0

0
1

2
2

5
1

2
5

0
1

2
7

5
1

3
0

0
1

3
2

5
1

3
5

0
1

3
7

5
1

4
0

0
1

4
2

5
1

4
5

0
1

4
7

5
1

5
0

0
1

5
2

5
1

5
5

0
1

5
7

5
1

6
0

0
1

6
2

5
1

6
5

0
1

6
7

5
1

7
0

0

ER
R

O
R

GENERATION



Step-by-step training of two ten-length sensory-motor sequences
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Training with only harmonizing, no crossover or mutation
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Training with only crossover and mutation, no harmonizing
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Task 2: light touch stimulation

• Create a randomly weighted network from the connectome.

• Turn off all but the ALML/ALMR light touch sensory neurons.

• Co-train with touch sensors off also to make sure it is responding to 
them.



Task 2, Part I: min/max fitness

• Train with a fitness function that rewards the 12 body joint muscle 
groups (MDR/MDL, MVR/MVL) to maximize the number and 
magnitude of min/max muscle forces on the body.
• This is admittedly a crude function. There will be a much better one in time 

with detailed measurements of the body dynamics.

• It is possible that muscle stretch sensors might perpetuate the undulation 
once started. This model does not take that into account.



C. Elegans muscle groups (ventral/dorsal motion)



Light touch undulation after training



Task 2, Part II: Fourier transform fitness

• Train with a fitness function that rewards the 12 body joint muscle 
groups (MDR/MDL, MVR/MVL) to produce smooth undulation.

• Smooth undulation will have frequency spectrum spike instead of 
distributed spectrum.



Fitter (left) and less fit (right) frequency spectrums



After training



Summary

• That the algorithm trains the entire connectome is unique, to my 
knowledge. Other efforts have simplified the connectome to reduce 
complexity.

• The algorithm’s “secret sauce” is the harmonization technique that 
trains ensembles of neurons together.  Without it results are poor.



Future work

• The algorithm only trains to whatever is defined as fitness. This 
suggests that with higher fidelity networks and more realistic fitness 
functions, more closely simulated behavior might be possible.

• Focusing on locomotion behavior seems like a good area since the 
muscle model now exists and detailed movement measurements are 
being captured.

• Porting has begun to use a higher fidelity biological model using the 
NeuroConstruct/Neuron tools and the NeuroML language.



Nuts and bolts

• 10,000+ lines of threaded C++, Java, bash/bat
• Separate program to read connectome spread sheet and create C elegans

network.

• Separate OGL program to view, create, and replay light touch behavior.

• Builds/runs on Windows (VS) and *nix (make)

• Uses FFTW3 Fourier transform package (www.fftw.org)

• Code at github.com/portegys/bionet

• Computing platform: NSF/XSEDE “Blacklight” shared memory 
computer (4096 cores).

http://www.fftw.org/
https://github.com/portegys/bionet
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