
Information, life, and artificial evolution 
Information and life 
The notion that the deep roots of the origin and evolution of life are to be found in information 

theory seems increasingly common [1, 4, 5]. Information theory [9] specifies that information is 

about messaging or signaling, and thus requires a receiving system. For example, a computer 

digital storage device would be devoid of information without a device to interpret it.  

We see life everywhere on our planet, and yet never do we observe it to arise spontaneously, 

likely because such life would be instantly consumed by its ruthlessly efficient predecessors. We 

also observe life nowhere else in our solar system as yet. The moons Europa and Enceladus 

beckon us with hints of warm oceans beneath icy sheaths. What is below?  

We yearn to know whether life is unique in the cosmos, where millions of earth-like worlds lie 

scattered among the stars. Would it be more shocking to land on such a planet, watery and warm 

for billions of years, and find life, or not to find life at all? Fermi’s Paradox [8] speaks of alien 

intelligence, but we members of Homo sapiens, as carriers of the condition on earth have only 

been about for a few million years, and our claim to immortality is far from settled. Life itself 

should have a firmer claim to ubiquity. But no one knows the dice that were thrown nor how 

many throws before life took hold here. 

One approach to define and formalize life is to frame it as a process of entropy and 

thermodynamics. We know that complex systems lie in a middle ground between high and low 

entropy [2], and that the thermal gradient imbued by our star warmed and stirred the primordial 

soup suitably for life, the quintessential complex system, to arise.  

One position, that taken by Adami [1], is that systems that persistently and maintain an entropy 

that is less than maximal must be considered in some sense lifelike: 

“Living systems can stay away from maximum entropy for much longer, indeed arbitrarily long 

(the biotic time scale is, for all we know, only limited by the existence of the biosphere). It is 

then this ability: to persist in a state of reduced entropy for biotic as opposed to abiotic time 

scales, that defines a set of molecules as living, and this set of molecules must achieve that feat 

via the self-replication of information.” 

Stephen Wolfram has in the past conjectured that not only life but all of reality is in a type of 

cellular automaton [17], drawing illustrations about how simple rule sets can produce dynamic 

patterns within them. More recently he has argued that graphs, another abstract informational 

construct, might model the observed universe [18]. 

Morphogenesis is a process of diversifying organs and tissues within an organism to complete its 

life cycle. Nature features many mechanisms, chemical, mechanical, electrical, etc. to 



accomplish this. However, at its core it is information that is being signaled and utilized. To 

abstract this within a cellular automaton, the Morphozoic model [13] has shown that tractable 

rule sets composed of hierarchically nested cellular neighborhoods are capable of producing both 

local and global information processing effects that can simulate reaction-diffusion 

morphogenesis [16], gastrulation, axon pathfinding, and other phenomena. 

There is evidence that natural complex systems, rather than becoming more fragile, actually 

become more robust and able to sustain and mutate. Even artificial systems seem to show this 

property under certain circumstances. For example, variations of circuits that can implement a 

logical function become more numerous as the number of components grows [14]. Ball [3] 

writes: 

“These ideas suggest that evolvability and openness to innovation are features not just of life but 

of information itself. That is a view long championed by Schuster’s sometime collaborator, 

Nobel laureate chemist Manfred Eigen, who insists that Darwinian evolution is not merely the 

organizing principle of biology but a “law of physics,” an inevitable result of how information is 

organized in complex systems. And if that’s right, it would seem that the appearance of life was 

not a fantastic fluke but almost a mathematical inevitability.” 

Continuing along these lines, studies of genetic variations indicates that “fit” configurations tend 

to be located on “paths” in the space of all possible configurations. This allow one successful 

genotype to migrate through mutation into other successful ones that could be more complex. 

This can be taken as a refutation of the oft-cited implausibility of life arising due to its sheer 

combinatorial complexity. Instead, we have systems that can evolve from simple origins to 

assume some of the many potential successful forms that nature permits. Ball summarizes thusly 

[3]: 

“Successful forms of RNA, proteins, etc., although taken in isolation are immensely improbable, 

are not the product of shaking a bunch of parts in a box and expecting a watch to assemble. 

Instead, there are pathways in highly dimensional, complex systems that are connected by 

relatively simple steps that lead to “fit” phenotypes. And strikingly, more complexity leads to 

more paths to fitness instead of making it harder and harder. So if you start with a minimally fit 

phenotype in a complex physical/chemical/biological milieu, mutable pathways will exist to take 

it to other fit phenotypes.” 

Supporting views about informational complexity arise from the arena of artificial neural 

networks, where research into why these networks are so successful at classifying an 

astronomical number of possible inputs has supported a position that the nature of the universe is 

such that there are relatively few fundamental functions within it [10]. For example, the known 

laws of physics are relatively compact and of consist of polynomial of low order. 

Artificial evolution 
The technique of genetic algorithms was introduced in the 1980s by John Holland [7]. This is a 

popular and highly successful means of optimizing a process in a high dimensional and rough 



space that mimics biological evolution. It encompasses such biological counterparts as genes, 

genotypes, and phenotypes that are evaluated by some fitness function. Mutations and genotype 

mating with gene cross-over are also used to produce fitter offspring within an evolving 

population of genotypes. Fitter offspring are selected to populate future generations. Genetic 

algorithms have been found to be capable of finding solutions within large and rough feature 

spaces, and thus are often employed as optimizers for problems of this sort. 

One striking example of the power of artificial evolution as an optimizer comes from the 

following [6]: 

 “A few years ago, Michael Levin faced a conundrum. He and his colleagues at the Tufts Center 

for Regenerative and Developmental Biology just outside Boston wanted to find a model that 

would explain why the flatworm—a model organism used throughout biology—looks the way it 

does. At a fundamental level, they wanted to be able to describe the cascade of events that leads 

to the growth of a head in one place and a tail in the other.” 

So a genetic algorithm was developed to try to find commonalities in 1,000 experiments related 

to the head-trunk-tail pattern in the flatworm. It worked: “In the end, it took 6 billion simulated 

experiments, 26,727 generations of models, and about 42 hours of processing by the Stampede 

computer before the computer came up with one result.” The model even explained results of 

papers not supplied to the algorithm that would have possibly affected the viability of solutions. 

It even predicted unknown results that were subsequently verified. 

This is an example of how computational biology, and artificial evolution in particular, can be 

used to explain and even predict biological phenomena. 

Another optimization utilizing genetic algorithms involved the weightings on the synapses that 

connect neurons in the nematode worm C. elegans. The worm has 302 neurons and a known 

wiring diagram called a connectome. There are over 3,000 synaptic connections between these 

neurons. Synapses are weighted such that the activation states of source neurons affect target 

neurons variably. These weights are difficult to determine. Portegys [12], using a hybrid genetic 

algorithm, showed how the weights could be optimized to produce arbitrary input-output 

sequences, suggesting possible weighting schemes for the actual synapses to produce observed 

behaviors. 

The 1990s were a hotbed of artificial life forms that evolved and mutated into emergent and 

unexpected results. Among these were: 

1. Tierra [15]. The goal was for competing chunks of computer code to vie for CPU and 

memory. It featured evolvability, mutations, replication, recombination, host-parasite co-

evolution, and punctuated equilibrium. 

2. Avida [2]. Similar in many ways to Tierra, but organisms compete for CPU only as they 

are isolated within memory bounds. 



3. Polyworld [19]. 2D creatures live, forage, prey, reproduce, evolve and mutate. The 

evolvable genome expresses not only the form of a creature, but also its behavior, which 

is controlled by an artificial neural network. 

Along the lines of engineered artificial evolution, in order to avoid malware detection, some 

computer viruses feature metamorphic code, which is self-editing but preserves the original 

function. This might entail adding bits that accomplish a sub-function through alternative means, 

or adding dead-code bits that obfuscate the signature libraries of virus detection programs. 
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