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Abstract 

Instincts are a vital part of the behavioral repertoire of 
organisms. Even humans rely heavily on these inborn 
mechanisms for survival. Many creatures, for example, build 
elaborate nests without ever learning through experience. This 
paper explores this evolutionary legacy in the context of an 
artificial goal-seeking neural network. An instinct is defined 
as a simple stimulus-response sequence that is triggered by 
environmental and other events. The well-known “Monkey 
and Bananas” problem is used as a task situation. Instincts are 
“hard-wired” neurons in the brain of a monkey. Using a 
genetic algorithm, a population of monkeys evolved to 
successfully solve the task that none were able to solve by 
experience alone. The solutions were also found to be quite 
adaptable to variations in the task; in fact more so than a 
hand-crafted solution.   

 
Introduction 

An instinct has been defined as “an innate tendency to 
action, or pattern of behavior, elicited by specific stimuli 
and fulfilling vital needs of an organism.” (The Columbia 
Encyclopedia, Sixth Edition, 2006). All animals have 
instinctive drives (e.g. sex and aggression) and reflexes 
(e.g. blinking and gagging), but many simple animals also 
inherit instincts for complex behaviors such as courtship 
displays and nest-building. These animals are frequently 
either incapable of extensive learning through experience, 
such as insects, or occupy environmental niches in which it 
is most effective in terms of survival to inherit rather than 
learn these behaviors. Animals are often faced with 
situations in which experiential learning with its attendant 
mistakes is simply too expensive or too risky. For this 
reason there are also cases in which behaviors originally 
acquired through experience have become innate (Baldwin, 
1896). Animals also do many things that do not have the 
immediate physiological “payoff” that obtaining food and 
water do, for example, but which are obviously beneficial 
for survival; the instinct to seek areas hidden from 
predators, for instance.  

So it seems reasonable that simulating simple creatures 
should involve the use of instinctive behaviors. The 
importance of this was impressed on me after training a 
neural network to solve a maze (Portegys, 2005). Without a 
teacher, there would be little hope of success. Even with a 
teacher the incentives must be linked to existing needs, 

such as training an animal with food rewards. In a 
“natural” setting this can become artificial and contrived. 
Humans have innate behaviors to give and respond to 
social rewards (smiles, embraces, etc.), which constitutes a 
powerful mechanism for inculcating important behaviors, 
such as language acquisition. Social reinforcements can 
work for more complex creatures, but what about insects? 

This paper investigates the evolution of instincts 
embodied in an artificial goal-seeking neural network. An 
instinct is defined as a simple stimulus-response sequence 
that is triggered by environmental and other events. It 
incorporates both drive and behavioral aspects of instincts. 
The well-known “Monkey and Bananas” problem is used 
as a task situation. This problem was first posed to study 
planning techniques, e.g. STRIPS (Fikes and Nilsson, 
1971), and thus might seem a somewhat novel choice for 
neural network learning. Instincts are inborn “hard-wired” 
neurons in the neural network of a simulated monkey. A 
genetic algorithm is used to evolve a population of 
monkeys to solve the problem. 

In this context, the evolution of instincts can be 
considered as an application of evolutionary computation, 
which has been applied to feedforward perceptron types of 
neural networks to construct network elements and weight 
their connections through genetic algorithmic approaches 
(Andriamasinoro, 2004; Igel and Sendoff, 2005; Weiß, 
1994). These networks have been successful in such tasks 
as flocking (Baldassarre, et al., 2003), foraging (Boshy and 
Ruppin, 2003), and cooperative nest building (Theraulaz 
and Bonabeau, 1995). In the Monkey and Bananas 
problem, a monkey must stack boxes in order to reach a 
goal of bananas, necessitating the evolution of control 
structures that achieve intermediate goals (box stacking 
and climbing) in order to obtain a final goal (bananas). The 
limited sensory apparatus of the monkey is such that it 
must retain some notion of the un-sensed state of the 
environment in order to succeed. I believe this state-
retention is a unique feature of this project. 

An additional purpose of this project is to further 
develop learning mechanisms suitable for a goal-seeking 
neural network called Mona. Although a connectionist 
architecture, Mona is more of a state-based planning 
system that a conventional pattern classifying neural 
network. It has exhibited complex behavior on a number of 
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tasks, including cooperative nest-building (Portegys, 2001) 
(www.itk.ilstu.edu/faculty/portegys/programs/NestViewer/
NestViewer.html). More recently (Portegys, 2005), it has 
learned mazes requiring retention of context information 
(www.itk.ilstu.edu/faculty/portegys/research/context-
learning.html#simulator). A brief review of Mona follows. 

 
A Review of Mona 

This section describes the system that will incorporate the 
instinctive learning capability. Mona is based on the 
rationale that brains are goal-seeking entities (Bickhard, 
1997). It has a simple interface with the environment, 
shown in Figure 1. All knowledge of the state of the 
environment is absorbed through senses. Responses are 
expressed to the environment with the goal of eliciting 
sensory inputs which are internally associated with the 
reduction of needs. 
 

 
Figure 1: Mona/Environment Interface 

 
Events can be drawn from sensors, responses, or the states 
of component neurons, calling for three types of neurons. 
Neurons attuned to sensors are receptors, those associated 
with responses are motors, and those mediating other 
neurons are mediators. Mediators can be structured in 
hierarchies representing environmental contexts. A 
mediator neuron controls the transmission of need through 
and the enablement of its component neurons. 

To elucidate by example, consider this somewhat 
whimsical task: let Mona be a mouse that has been out 
foraging in a house and now wishes to return back to her 
mouse-hole in a certain room. For the sake of keeping 
peace with her fellow mice, she must not make the mistake 
of going into a hole in another room. Figure 2 shows her 
neural network at this juncture.   

The triangle-shaped object at the bottom is the receptor 
neuron that fires once she has reached her hole; the 
inverted triangles are motor neurons that accomplish the 
responses of going to the correct room (Go Room), and 
going into the hole (Go Hole). The ellipses are mediator 
neurons. Each is linked up to a cause and effect event 
neuron. The “Hole Ready” mediator is not enabled, 
reflecting the importance of not going into a hole in the 
wrong room. The “Room Ready” mediator is enabled, 
signifying an expectation that if its cause event fires, its 
effect will also fire. 

The “Home!” receptor neuron has a high goal value, 
indicating that it is associated with a need. Because of this, 
motive influence propagates into the network, flowing into 
motor neurons whose firings will navigate to the goal. 

Since the “Hole Ready” neuron is not enabled, the motive 
bypasses the “Go Hole” motor neuron in search of a 
mediator whose firing will enable “Go Hole”. Since “Hole 
Ready” is an effect of “Room Ready”, it flows into the “Go 
Room” motor via the enabled “Room Ready” mediator and 
causes it to fire (double outline). 

 
Figure 2: Initial Mouse Network 

 
 

 
Figure 3: Final Mouse Network 

 
The flow of motive illustrates how mediators representing 
contexts work together. The appropriate context for “Hole 
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Ready” is “Room Ready”, which means that the latter 
should necessarily contribute something to the former in 
order to enable it. This something is called a wager. A 
wager temporarily modifies the enablement of a mediator 
that is the effect event of another mediator. It is called a 
wager because the base-level enablement of the wagering 
mediator will be evaluated based on subsequent firing of 
the effect neuron. 

In Figure 3 the “Go Room” cause firing can be 
understood as a conditional probability event: given that 
Mona is in the correct room (“Room Ready”), she is quite 
certain that she can go into her own hole. This 
accomplished by a wager from “Room Ready”, triggered 
by “Go Room”, that boosts the enablement of “Hole 
Ready”. After this enablement occurs, motive flows into 
the “Go Hole” motor neuron, causing it to fire. 
Subsequently the Mona senses that she is home in her hole. 

 
Description 

The Monkey and Bananas environment is shown in Figure 
5. The monkey and three boxes are initially placed on the 
lower level of the floor. On the left upper level is a bunch 
of bananas. The environment is divided into discrete X and 
Y cells. The task is to gather and stack the boxes against 
the left wall in order to climb them to reach the bananas. 

The monkey has three sensory capabilities: vision, 
direction, and box holding state. The vision sense allows 
the monkey to sense the state of the cell immediately 
adjacent to it in the direction it is looking. Possible values 
are: floor, wall, box, air, and bananas. The direction sense 
allows the monkey to determine which direction it is 
looking, left or right. The box holding state allows the 
monkey to determine if it is holding a box. The response 
capabilities are: go left, go right, climb, pickup, stack, and 
eat. 

 
Instincts 
An instinct is an entity that activates or inhibits a specific 
behavior by manipulating need and goal values. An instinct 
may activate periodically or in response to the activity of 
other instincts. An instinct is defined by several elements, 
as shown in Table 1.  `    
 

Event sequence Stimulus-response sequence. 
Need index Identifies need. 
Need value Need increment when triggered. 
Need frequency Frequency of need triggering. 
Need duration Duration of need value. 
Goal value Need decrement when events fire. 

Table 1: Instinct Definition 
 

The event sequence is a either a 3 (S-R-S) or 5 (S-R-S-R-
S) event sensory-response sequence. Longer sequences 
were not used to keep instinctive behavior simple. The 
event sequence is used to generate  a mediator neuron and 

its component receptor and motor neurons. Instinctive 
mediators are unique in that, although they can be updated 
with respect to enablement, they cannot be deleted from the 
network. Normal mediators are subject to deletion when 
replaced by superior mediators. 

The need index indicates which need is modified by the 
instinct, and the need value is the quantity of this 
modification. Need value may be either negative or 
positive; a positive need motivates behavior toward firing 
the associated mediator, and negative need establishes 
avoidance behavior. The need frequency indicates how 
often the instinctive need occurs; a value of 0 denotes a 
single occurence. Need duration indicates how long a need 
is expressed; a value of 0 denotes no time limit.  Goal 
value indicates the amount of change to the need when the 
associated mediator neuron fires. Goal value may also be 
negative or positive. A positive goal value reduces the 
need, and a negative increases it. The latter can be used to 
trigger a subsequent behavior, and thus could be used to 
produce a chain of behaviors. An example of an instinct 
from a “successful” evolved monkey is shown in Figure 4. 
 

events={ 
stimuli=[Dont care,Look right,Dont care] 
response=Pickup 
stimuli=[Floor,Look right,Dont care] 
response=Go left 
stimuli=[Floor,Dont care,Hold] 

} 
needIndex=1 
needValue=7.830277 
needFrequency=9 
needDuration=40 
goalValue=1.873116 

 
Figure 4: Example Instinct Values 

 
The monkey instinct parameters are given in Table 2: 
 

Maximum number of instincts 20 
Minimum number of instincts 5 
Maximum number of events 5 
Minimum number of events 3 
Number of needs 10 
Maximum need value 10.0 
Minimum need value 1.0 
Maximum need frequency 10 
Minimum need frequency 0 
Maximum need duration 50 
Minimum need duration 0 
Maximum mediators 50 

Table 2: Monkey Instinct Parameters 



Figure 5: Graphical Interface 

 
Evolution/Genetic Algorithm 
An initial population of 20 monkeys was randomly 
generated using the parameters in Table 2. When a monkey 
was selected to run, its neural network was constructed 
using its instincts. In addition, each monkey was given an 
innate need for bananas, meaning the receptor sensing 
bananas was associated with a need and goal value unique 
to bananas. 

Each monkey was given up to 200 steps to find the 
bananas. Fitness was calculated based on: finding the 
bananas, stacking boxes toward the wall, and speed (if 
bananas found). This rewarded monkeys who showed at 
least an ability to move boxes in the correct direction. A 
100% fitness was assigned to monkeys finding the 
bananas. The next generation was created by selecting the 
fittest 10 monkeys, creating 8 new mutants and 2 new 
offspring. A mutant was derived from a random fit monkey 
by randomly replacing instincts with new random ones 
with a probability of 10%. Note that instincts themselves 
were not mutated. An offspring of fit monkeys contained a 
random selection of the parents’ instincts. 

 
Programming/Computing Environment  
Mona is written is C++. The evolution programs include 
graphics written in Allegro (alleg.sourceforge.net), which 
is portable between the most popular OS/platforms, 
including Windows and various Unix/Linux machines. 
Two dual processor SUN Sparc machines were available 
for the evolution runs. 

The open source C++ code, including some pre-built 
libraries, is available at: 
www.itk.ilstu.edu/faculty/portegys/research.html#instinct
 

Results 
As a base case, monkeys were run with no instincts, relying 
alone on experiential learning with a maximum possibility 

of 50 mediator neurons. Even when given many (> 1000) 
steps, none of the monkeys learned to find the bananas. 
Considering these monkeys started with no knowledge of 
the environment and limited sensory capabilities (only able 
to see adjacent cells), this was not surprising. 

With the aim of segueing from simpler to more complex 
behavior, the first test evolved monkeys in a fixed 
environment, meaning that the boxes and the monkey 
started in the same locations for an entire evolution run, 
each of which consisted of 1000 generations. Since 
monkeys can possess both instinctive mediators and 
mediators created by experience, comparison runs were 
made to determine the influence of experiential learning. 
Specifically, all populations were given a maximum of 20 
instinctive mediators, and populations also learning from 
experience could create an additional 50 mediators. An 
average of 10 runs is shown in Figure 6.  
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Figure 6: Fixed Environment Evolution 

 
Data points on the graph represent averages of a 
population’s fittest (selected) members in a 50-generation 
window of time. The graph shows that performance 
improves most rapidly in the initial 300 generations, 
gaining slowly after that. On inspection of the data, 
populations relying on instincts alone were able to achieve 
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a 90-95% success rate on average. Adding experiential 
learning produces an improvement of about 5% above that, 
indicating that instinctive mediators were responsible for 
most of the fitness. In order to study the performance of 
instinct learning specifically, the remaining tests were 
made without experiential learning.  

For the next test the environment was “scrambled”, 
meaning that the placement of the boxes and the monkey 
varied randomly for each monkey test. So a monkey that 
solved a particular environment would likely be faced with 
a different environment in the next generation. The 
performance of populations under these conditions varied 
significantly, but the best were able to achieve a fitness of 
approximately 90%. Figure 7 shows the progress of one of 
the more successful populations. 
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Figure 7: Initial Scrambled Environment 

 
A consistent result was that the best populations of 
monkeys failed to achieve much better than 90% fitness. 
On closer inspection, some individual monkey fared better 
in some environments than others, so more often than not 
some monkeys in the population would be able to find the 
bananas, but individual monkeys did not have the ability to 
solve many varied environments. The instincts of such a 
monkey of course would have dominated the population.   

This result inspired the next test, which was to take a 
population of monkeys evolved in a fixed environment and 
then expose them to scrambled ones. Interestingly, many 
such populations adapted relatively quickly (200 
generations) to perform well in environments that they had 
never been exposed to and were able to perform at >95% 
fitness rate by the end of the run. However, as in the 
previous test, there were varied performances by 
populations. The evolution of one of the more successful 
populations is shown in Figure 8. Upon closer inspection, 
in these successful populations individual monkeys were 
more generalists, being able to solve many scrambled 
environments. Apparently for this task it is better to allow 
adaptation to a stable environment before varying it, rather 
than expect adaptation to an initially unstable environment.  

A set of 10 evolved monkeys attempting to solve random 
Monkey and Bananas problems in real-time is available at 
itklinux.itk.ilstu.edu/~portegys/instinct-demo.html  

A final comparison was made with a hand-crafted 
solution that was written to verify the feasibility of the task 
and to estimate the number of instincts that might be 
required, parameter ranges, etc. It was not a simple task to 
write, necessitating the 13 instincts shown in Appendix 1, 
but it performed perfectly in the fixed environment for 
which it was programmed. However, when exposed to 
scrambled environments, the average fitness dropped to 
less than 60%, meaning that the evolved instincts 
performed much better. 

Observing a successful monkey at work, there is a great 
deal of seemingly erratic behavior, reminiscent of watching 
an ant crawl across a patch of ground, yet in the end the 
boxes are stacked, climbed, and the bananas obtained. 
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Figure 8: Fixed Followed by Scrambled Environment 
 

Conclusions 
The success of the instinct model suggests that it may be of 
further use in other problem environments where there is 
no teacher other than the environment itself, as is often the 
case with simple organisms. The fact that a set of brief 
behaviors could evolve to work together to solve a 
relatively complex task was quite remarkable, especially 
considering that the performance of evolved instincts was 
superior to a hand-crafted set of instincts. The instinct 
model has several novel features, such as time-based 
functions and the capability of some behaviors to motivate 
other behaviors, which could be useful in other 
applications. 

It should be noted that a variation of the instinct model 
might be applicable to more conventional recurrent neural 
networks. Modules containing the time-based portions of 
instincts might be attached to the network as internal 
inputs, and the network trained to execute specific 
input/output sequences when appropriately activated. 

Plans are underway to build a more complex 
environment involving predators and prey in which a 
combination of instinctive and experiential learning will 
allow organisms to survive through a balance of 
cooperative and competitive behaviors. 
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Appendix 1 – Hand-Crafted Instincts 
// Look right for box. 
  events={ 
    stimuli=[Floor,Dont care,No hold] 
    response=Go right 
    stimuli=[Box,Dont care,No hold] 
  } 

  needIndex=1 
  needValue=4.000000 
  needFrequency=0 
  needDuration=50 
  goalValue=0.200000 
 
// Continue looking for box. 
  events={ 
    stimuli=[Floor,Dont care,No hold] 
    response=Go right 
    stimuli=[Floor,Dont care,No hold] 
    response=Go right 
    stimuli=[Box,Dont care,No hold] 
  } 
  needIndex=1 
  needValue=4.000000 
  needFrequency=0 
  needDuration=50 
  goalValue=0.200000 
 
// Pickup box. 
  events={ 
    stimuli=[Box,Look right,No hold] 
    response=Pickup 
    stimuli=[Floor,Look right,Hold] 
  } 
  needIndex=2 
  needValue=1.000000 
  needFrequency=1 
  needDuration=0 
  goalValue=0.100000 
 
// Turn left with box. 
  events={ 
    stimuli=[Floor,Look right,Hold] 
    response=Go left 
    stimuli=[Floor,Look left,Hold] 
  } 
  needIndex=2 
  needValue=1.000000 
  needFrequency=1 
  needDuration=0 
  goalValue=0.100000 
 
// Go left toward bananas. 
  events={ 
    stimuli=[Dont care,Look left,Dont care] 
    response=Go left 
    stimuli=[Bananas,Look left,Dont care] 
  } 
  needIndex=2 
  needValue=1.000000 
  needFrequency=1 
  needDuration=0 
  goalValue=0.100000 
 
// Continue going left. 
  events={ 
    stimuli=[Dont care,Look left,Dont care] 
    response=Go left 
    stimuli=[Dont care,Look left,Dont care] 
    response=Go left 
    stimuli=[Bananas,Look left,Dont care] 



  } 
  needIndex=2 
  needValue=1.000000 
  needFrequency=1 
  needDuration=0 
  goalValue=0.100000 
 
// Stack box on wall. 
  events={ 
    stimuli=[Wall,Look left,Hold] 
    response=Stack 
    stimuli=[Box,Look left,No hold] 
  } 
  needIndex=3 
  needValue=3.000000 
  needFrequency=0 
  needDuration=0 
  goalValue=1.000000 
 
// Stack box on box. 
  events={ 
    stimuli=[Box,Look left,Hold] 
    response=Stack 
    stimuli=[Box,Look left,No hold] 
  } 
  needIndex=3 
  needValue=3.000000 
  needFrequency=0 
  needDuration=0 
  goalValue=1.000000 
 
// Prevent stacking box out on floor. 
  events={ 
    stimuli=[Floor,Dont care,Hold] 
    response=Stack 
    stimuli=[Box,Dont care,No hold] 
  } 
  needIndex=4 
  needValue=0.000000 
  needFrequency=1 
  needDuration=0 
  goalValue=-10.000000 
 
// Prevent stacking box to right. 
  events={ 
    stimuli=[Box,Look right,Hold] 
    response=Stack 
    stimuli=[Box,Look right,No hold] 
  } 
  needIndex=4 
  needValue=0.000000 
  needFrequency=1 
  needDuration=0 
  goalValue=-10.000000 
 
// Prevent picking up stacked box 
  events={ 
    stimuli=[Box,Look left,No hold] 
    response=Pickup 
    stimuli=[Floor,Look left,Hold] 
  } 
  needIndex=4 
  needValue=0.000000 

  needFrequency=1 
  needDuration=0 
  goalValue=-10.000000 
 
// Climb two boxes. 
  events={ 
    stimuli=[Box,Look left,No hold] 
    response=Climb 
    stimuli=[Dont care,Look left,No hold] 
    response=Climb 
    stimuli=[Bananas,Look left,No hold] 
  } 
  needIndex=5 
  needValue=1.000000 
  needFrequency=10 
  needDuration=0 
  goalValue=0.100000 
 
// Climb wall and see floor on platform. 
  events={ 
    stimuli=[Wall,Look left,No hold] 
    response=Climb 
    stimuli=[Bananas,Look left,No hold] 
  } 
  needIndex=5 
  needValue=1.000000 
  needFrequency=10 
  needDuration=0 
  goalValue=0.100000 
 
// Eat bananas. 
  events={ 
    stimuli=[Bananas,Look left,No hold] 
    response=Eat 
    stimuli=[Floor,Look left,No hold] 
  } 
  needIndex=0 
  needValue=10.000000 
  needFrequency=0 
  needDuration=0 
  goalValue=10.000000     
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