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This study compares the maze learning performance of three artificial neural network architectures: an Elman 

recurrent neural network, a Long Short-Term Memory (LSTM) network, and Mona, a goal-seeking neural network. 

The mazes are networks of distinctly marked rooms randomly interconnected by doors that open probabilistically. 

The mazes are used to examine two important problems related to artificial neural networks: (1) the retention of 

long-term state information and (2) the modular use of learned information. For the former, mazes impose a context 

learning demand: at the beginning of the maze, an initial door choice forms a context that must be remembered 

until the end of the maze, where the same numbered door must be chosen again in order to reach the goal. For the 

latter, the effect of modular and non-modular training is examined. In modular training, the door-associations are 

trained in separate trials from the intervening maze paths, and only presented together in testing trials. All networks 

performed well on mazes without the context learning requirement. Mona and LSTM performed well on context 

learning with non-modular training; the Elman performance degraded as the task length increased. Mona also 

performed well for modular training; both LSTM and Elman performed poorly with modular training. 

Keywords: Maze learning; context learning; modular learning; Elman recurrent neural network; Long Short-Term 

Memory network; Mona goal-seeking neural network. 

1. Introduction 

For decades researchers have used mazes as a means to 

measure the learning capabilities of animals [1]. For 

instance, the effects of a proposed memory-enhancing 

drug may be tested on rats by observing how well they 

learn mazes in comparison to a control group. More 

recently mazes have been employed as a means to 

investigate learning in artificial neural networks [2,3,4]. 

These studies typically use variations of a T-maze as a 

test environment in which learning is accomplished 

through exploration. The mazes used here are too 

complex to be learned by exploration; they are 

exploited through training, which also poses interesting 

challenges to neural network learning. 

This study compares the maze learning performance 

of three artificial neural network architectures: an 

Elman recurrent neural network, a Long Short-Term 

Memory (LSTM) network, and Mona, a goal-seeking 

neural network. In this experiment, a set of related 

mazes is generated and presented to the neural network 

for training and testing. The related mazes are instances 

generated from a common probabilistic maze called a 

metamaze such that any two instances might contain 

common and divergent path segments. The aim is to 

challenge a neural network with a task that demands 

both sequence learning and the ability to discriminate 

diverging paths. 

An important function of many organisms is the 

ability to use contextual information in order to increase 

the probability of achieving goals [5,6,7]. For example, 

a street address has a particular meaning only in the 

context of the city it is in. Context learning demands the 

retention of state information for an extended duration, 

a challenge for most artificial neural networks. To test 

context learning, at the beginning of the maze an initial 

door choice forms a context that must be remembered 

until the end of the maze, where the same numbered 

door must be chosen again in order to reach the goal. 

Thus the learner must retain this door association while 

navigating the intervening path through the maze. 

Two types of training are done for context learning: 

modular and non-modular. In modular training, the 

context door-associations are trained in separate trials 
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from the intervening maze paths, and only presented 

together in end-to-end testing trials. The maze entry and 

exit rooms form interfaces connecting the modular 

training sets. In non-modular training, the door-

associations and maze instances are presented together 

as they are in the testing trials. 

 Testing success with modular training suggests 

modular internal representations. The issue of 

modularity in neural networks is an important one: 

monolithic (non-modular) neural networks such as the 

classic feed-forward perceptron often store 

representations of independent input spaces in a non-

modular fashion, making them difficult to scale and re-

train. Moreover, the biological neural networks of many 

animals feature a great deal of modularity both in 

function and structure. This allows them to re-train 

dynamically, a significant survival advantage in the 

face of a changing environment. 

Azam‟s [8] survey of modular neural networks cites 

the Hierarchical Mixture of Experts (HME) as a 

prominent architecture. In this and several other 

schemes, an a priori partitioning of the input space is 

done in order to create a tree structure of neural 

networks. Tan and Nolfi [9] devised a means of 

autonomously partitioning the input space of a maze 

learning task by recognizing a dynamical phase change 

as an indicator of a transition to a different partition. 

Optimally, each partition is then managed by a 

dedicated recurrent neural network. This system was 

able to learn a two-room maze but instabilities requiring 

further study were also observed. 

One of the aims of this project is to determine how 

well the Mona network can modularly self-organize in 

an autonomous manner without relying on adjunct 

networks. Additionally, the issue of modularity in 

learning systems may be thought of in relation to the 

well-known AI frame problem [10]. The frame problem 

is about things that change and things that remain the 

same when an action is taken in the world. For learning, 

the question is how knowledge is represented such that 

when the world changes only the affected portions of 

the representation are changed.  

Elman networks are a type of Recurrent Neural 

Network (RNN) having a state-retention capacity that 

allows them to classify temporal input sequences, 

which for the maze learning task consist of goal paths. 

Elman networks have been widely studied and have 

proven to be successful in a variety of tasks, such as 

grammar [11,12] learning and text classification [13]. 

Another reason for selecting an Elman network for the 

metamaze task is to observe how state information 

degrades over time [14]. The context learning task is 

used for this purpose. The Elman network used for the 

maze task is described in a subsequent section. 

The Long Short-Term Memory (LSTM) network 

[14] is designed to allow state information to be 

retained over extended periods of time through the use 

of special activation units called memory blocks. LSTM 

networks have been shown to solve tasks that require 

long-term retention of state information [15]. One such 

task, the Embedded Reber Grammar, bears some 

similarity to the context learning task. The LSTM 

network used for the maze task is described in a 

subsequent section.  

Although a connectionist architecture, Mona also 

has elements of a state-based planning system. While 

planners in artificial intelligence [16] are typically 

symbolic and not connectionist systems, it seems clear 

that neural networks must also be able to perform 

planning if they are to function as biological networks 

do. Mona has been successfully used on a number of 

tasks, including cooperative nest-building [17] and 

learning a 3D grid environment for a simulated foraging 

robot [18]. Mona models the homeostatic need-

reduction mechanism that animals possess as an 

integrated motivation mechanism designed to produce 

responses to reach goals that reduce needs. It is 

described more fully in a later section. 

Q-Learning [19] was also compared as a base level 

on the metamaze task since it keeps only the current 

room mark as state information, underscoring the 

importance of sequence learning. 

2. Description 

2.1. Metamazes 

A metamaze is a network of uniquely marked rooms 

interconnected by doors that open probabilistically. One 

room serves as the maze entry and another as the exit, 

which is the goal. The task is to move from the entry to 

the exit room. An instance of a metamaze is generated 

by resolving the probabilities that determine the open-

ability of the doors. Thus a metamaze may generate a 

set of maze instances that are similar yet vary in some 

details. For example, a path having a high probability 

may appear in most instances, but not in all. The neural 
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networks are trained to follow optimal paths for a 

specific set of instances. 

Each room contains a fixed number of doors (with 

one exception for context learning). A connection is a 

randomly determined directional link from a door in a 

source room to a target room. Doors without 

connections are visible but cannot open. Each 

connected door in a maze instance is constructed using 

a probability that it will open. A door that will open 

allows a learner to transition to the target room.  If a 

door does not open the learner remains in the source 

room. A door may be thought of as a teleport control 

that might not be connected to anything and that might 

not work. If it does work the learner will observe that 

the room marking is different in the target room. 

A maze instance is determined by a metamaze and a 

random number generator seed. Using the seeded 

random number generator a resolution is made for each 

connected door probability to determine its openability. 

So a door with a 10% probability in the metamaze has a 

10% chance of being openable in the instance, for 

example. A path through a maze instance is a sequence 

of rooms and door connections from the entry room to 

the exit room. 

In order to discover “interesting” maze instances for 

the project, a program was written to randomly generate 

and score metamazes of varying (5, 10, and 15) 

numbers of rooms, with varying (3 and 5) numbers of 

doors per room. Metamazes were scored primarily on 

the number of paths and secondarily on the average 

path length. The number of random connections per 

metamaze grew with the number of rooms and doors. It 

was also found that higher scoring (see below) mazes 

were generated if connections were forced to be bi-

directional, that is, if room A had a connection to B, 

then B also had a connection to A, although not 

necessarily with the same numbered door. This allows 

backtracking.  For each metamaze, 10 instances were 

generated and searched for goal paths. A set of 

instances was then selected with the requirement that it 

must be possible to train a learner to traverse a goal 

path regardless of which instance is presented. In other 

words, a properly trained learner can always solve a 

maze without error, defined as trying a wrong door, 

even though it may have to try doors that do not open 

and loop to gain information about which instance it is 

in. For each of the 6 possible maze dimension values 

(rooms × doors), 1000 metamazes were generated and 

the best 50 retained as suitable training mazes. Table 1 

shows the average number of paths for the various 

room and door combinations of the retained mazes. 

Table 2 shows the average path lengths. 

Table 1. Average metamaze goal paths. 

 ROOMS 

D
O

O
R

S
  5 10 15 

3 1.46 1.62 2.36 

5 1.76 3.34 3.62 

Table 2. Average metamaze goal path length. 

 ROOMS 

D
O

O
R

S
 

 5 10 15 

3 3.96 6.62 6.28 

5 3.93 5.65 6.16 

 

 
As the maze is navigated, knowledge of the specific 

instance is revealed and can be utilized to find the goal. 

To illustrate, consider the metamaze and its 3 instances 

(A, B, and C) shown in Figure 1.  
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Fig. 1. Example metamaze (top left) with instances, A (top right), B (bottom left), and C (bottom right).
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Each vertex represents a room. Room 0 is the start 

room and room 2 is the goal. In the metamaze, each 

edge is a door annotated with the probability of it being 

openable. Although each room actually has the same 

number of doors, only doors that are connected to 

rooms are shown for clarity. In the maze instances, the 

open or closed resolution of the probabilities is denoted 

by solid and dashed edges, respectively. The sequence 

of rooms and connections visited for each instance is 

also marked, so in C the path taken to the goal is rooms 

0, 3, 2 via doors 1 and 2 respectively. Note that for 

mazes A and B the learner also visits room 3 even 

though it is blocked by the closed door 2. The learner 

then returns to room 0 and proceeds to the goal via 

room 1 (although using different doors in A and B). 

The reason the learner is thusly trained is this: for maze 

instance C, if the learner proceeds directly to room 1 it 

will find itself blocked from the goal and also unable to 

retract to room 0. So the successful scheme is to train 

the learner to try room 3 first. 

The maze search algorithm finds the shortest goal 

path “knowing” only what the learner can know at 

every step; initially the learner knows only that the 

maze is one of a set of possible instances. The aim is to 

find paths that achieve the goal. This is an interesting 

problem in its own right and as it turns out is not a 

simple algorithm, although outside the scope of this 

paper. It is included in the download noted in the 

conclusion. As mentioned previously, the maze 

discovery program invokes the search algorithm for a 

set of instances and selects a subset of instances that 

always allow a learner to find a path to the goal. 

2.1.1. Context learning mazes 

A portion of this study is devoted to the learning and 

application of context information, which is represented 

as an additional maze learning task. At the beginning of 

the maze, an initial door choice forms a context that 

must be remembered until the end of the maze, where 

the same numbered door must be chosen again in order 

to reach a goal. The learner must learn both the door 

associations and the intervening path through the maze 

in order to complete a trial successfully. An example of 

such a maze is shown in Figure 2. 

 

Fig. 2. A context learning maze. 

In the start room only one of the possible doors is 

visible and is open to the maze entry room. The entry-

to-exit room portion of the maze is an instance of a 

metamaze as described above, where the exit room now 

has door choices. Here the learner must choose the 

same numbered door as that leading from the start room 

to the entry room in order to reach the goal room. It can 

be seen that the context in this problem is to retain 

information about which door led from the start room in 

order to repeat this choice at the exit room. A single 

wrong door try is counted as a trial failure. In order to 

ensure that the context information varies, for each trial 

the door leading from the start room is randomly 

determined. 

2.2. Neural networks 

2.2.1. Elman recurrent neural network 

An Elman network, also known as a Simple Recurrent 

Network, contains feedback units that allow it to retain 

temporal state information useful in classifying 

sequential input patterns. These feedback units reside in 

a context layer as shown in Figure 3. Each hidden layer 

unit has a connection to a corresponding context unit 

with a fixed weight of 1. All other weights are trainable. 

A processing step is then: 

   

1. Set input unit activations to input pattern.  

2. Compute hidden unit activations using input from 

input and context layers.  

3. Compute output unit activations.  

4. Copy new hidden unit activations to context layer. 
  
The Elman network was created with the Stuttgart 

Neural Network Simulator (SNNS) version 4.2 (www-

ra.informatik.uni-tuebingen.de/SNNS/). For maze 

learning the network was configured with 25 hidden 

http://www-ra.informatik.uni-tuebingen.de/SNNS/
http://www-ra.informatik.uni-tuebingen.de/SNNS/
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and 25 context units, which proved to perform well for 

the basic task. For a maze with 5 doors there were 10 

input units, 5 to encode the room mark and 5 for the 

doors, and 5 output units for the door selection. The 

network was initialized with the SNNS “JE_Weights” 

initialization function, standard for Elman networks. 

The initial connection weights were randomly set to 

values between -1 and 1, and the initial activation of the 

context units was 0. The learning function was 

“JE_BP” with a default learning rate of 0.2, and the 

update function was “JE_Order”, both typical for 

Elman networks.  

 

 

Fig. 3. Elman recurrent network. 

The following training and testing procedure was used 

for each of the 50 selected metamazes. 

For non-context metamaze training, a training 

pattern file was generated for each metamaze instance, 

each containing a unique goal path consisting of a 

sequence of input/output pairs, where the room mark 

and visible doors comprise the input and the correct 

door choice the output. The network was trained in 

1000 epochs, where in each epoch all the training 

patterns were presented in a random order. The 

activation states of the neurons were reset before each 

sequence presentation. For testing, the connection 

weights were frozen and the patterns were presented in 

order. A pattern was scored as correct if the network 

produced the correct sequence of outputs; otherwise it 

was scored as incorrect. 

For non-modular context learning, pattern files were 

created for all possible metamaze instance and context 

door combinations. So if there were 3 maze instances 

and 5 doors per room, there were 15 pattern files, each 

containing an “end-to-end” sequence from start room to 

goal. These were used for both training and testing. 

Again, there were 1000 training epochs, with all the 

patterns randomly presented each epoch. Testing 

consisted of presenting all the patterns in the set and 

scoring them based on producing the correct output 

sequence. 

For modular context training, there were 2 sets of 

files. One set trained the maze instance paths, and was 

thus identical to the non-context set, and the other 

trained the context door associations. Each context door 

association file contained 2 patterns: a start room 

pattern and an exit room pattern. So for example the 

door 0 training file contained a start room pattern with 

only door 0 visible as input and the output being the 

choice of door 0; the second pattern was the exit room 

with all doors visible as input, and the output again 

being door 0. Modular context testing used the same set 

of end-to-end patterns used for the non-modular context 

testing. In each of the 1000 training epochs, all the 

patterns in the 2 training sets were randomly presented. 

Testing followed the training epochs. 

2.2.2. Long Short-Term Memory (LSTM) neural 

network 

A problem in training a simple recurrent neural network 

such as the Elman is that the gradient of the error 

quickly vanishes as the time lag between the output and 

the relevant input increases, leading to the inability to 

train the retention of long-term state information. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. LSTM single-celled memory block. 

 



Maze learning 7 

 

In the LSTM network, the hidden units of a 

conventional recurrent neural network can be replaced 

by memory blocks, each of which contains one or more 

memory cells. A memory block containing a single cell 

is shown in Figure 4. The cell is a simple linear unit 

with a single self-recurrent connection with weight set 

to 1. In the absence of any other input, this connection 

serves to preserve the cell's current state indefinitely. 

Deciding what information to store, and when to output 

that information lies with a multiplicative input and 

output gating unit, respectively. 

The LSTM code was obtained from the Institute of 

Bioinformatics at the Johannes Kepler University 

(www.bioinf.jku.at/software/lstm). After some trial-

and-error tuning, the network was configured with 8 

single-celled memory blocks and 10 hidden units, and 

the learning rate set at 0.1. The inputs and outputs were 

encoded as for the Elman network. Training and testing 

were also done as for the Elman network, except that 

2500 training epochs were performed.  

2.2.3. Mona goal-seeking neural network 

2.2.3.1. Description. Mona is a model based on the 

rationale that brains are goal-seeking neural networks. 

It has a simple interface with the environment: all 

knowledge of the state of the environment is absorbed 

through senses. Responses are expressed to the 

environment with the goal of eliciting sensory inputs 

which are internally associated with the reduction of 

needs. 

Events can be drawn from sensors, responses, or the 

firing states of component neurons, calling for three 

types of neurons: those attuned to sensors are receptors, 

those associated with responses are motors, and those 

mediating other neurons are mediators. A mediator 

presides over a sequence of neuron firing events, 

retaining state information and driving need-based 

motive through the network to activate motor responses 

that will move the system toward goals that reduce 

needs. Mediators can be structured in hierarchies 

representing environmental contexts. The state of the 

environment is represented by the configuration and 

enablement of mediator neurons. An enabled mediator 

can be thought of as representing a sequence of stimuli 

and responses that will reliably occur in the 

environment. 

 

 

 

A processing step in Mona is as follows: 

 

1. Sense. Environmental stimuli are sensed, firing 

appropriate receptors. These firings cascade 

upward into overarching mediators, creating an 

updated network firing state.  

2. Enable. Using the firing state of the network, the 

enablements of component neurons are updated. 

For example, if a mediator‟s cause event fires, it 

can enable its effect event indicating that the 

environmental situation corresponding to the effect 

event is pending. 

3. Learn. Firing neurons are matched with previous 

firing events to hypothesize causal sequences that 

are captured by the creation of new mediators.  

4. Drive. The reduction of needs is associated with 

the firing of associated goal neurons. It is through 

these neurons that motive propagates into the 

network. Based on needs, goals, and the updated 

enablement state of the network, motive 

accumulates in appropriate motor neurons. 

Multiple needs can either compete or cooperate in 

driving the network. A need whose level is low 

contributes less drive than one whose level is high.  

5. Respond. A relatively highly motivated motor 

neuron activates a response. 
 

As an example, what follows in Figures 5-7 is a 

sequence that illustrates several processing steps in an 

actual assembly of neurons that control a door 

association in the context learning portion of the maze 

task. There are 3 mediators: one controlling the events 

at the start room, one for the maze exit room, and a 

mediator connecting the other mediators. This assembly 

interacts with, but is modularly independent of, other 

neurons that govern the inner maze navigation. The 

assembly shown is for door 0; other door associations 

will have their own assemblies.  

Several notational definitions must first be given. 

The triangles are receptor neurons, the inverted 

triangles are motor neurons, and the ovals are 

mediators. Mediators are linked to a single cause 

neuron, a single effect neuron, and 0 or more 

intervening intermediate neurons. The „*‟ tag on a link 

signifies which event neuron is expected to fire next. A 

firing neuron is shown by a double outline. Mediator 

neurons also display their enablement state as a value 

from 0 to 1. Neurons having a goal value are annotated. 

Finally, motive is shown in block arrows driving 

through the network. The labels on the neurons were 

placed manually for descriptive reasons.  

http://www.bioinf.jku.at/software/lstm
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Fig. 5. The initial state of the Door 0 Correspondence neuron assembly in a maze with 5 doors per room. Since the Door 0 Goal 

Mediator is only partially enabled (20% a priori chance that door 0 is correct), motive propagated from Goal Room neuron splits 

accordingly, with 80% going to the Door 0 Bridge Mediator to further enable the Door 0 Goal Mediator neuron. Within the Door 0 

Bridge Mediator, motive is shunted into the expected component event, the Door 0 Start Room receptor neuron.
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Fig. 6. The Door 0 Start Room receptor neuron fires when the learner senses the start room having door 0 as the only possible choice. 

The next expected event is the firing of the Open Door 0 motor neuron. 

 



10 Portegys 

 
Fig. 7. The Maze Entry Room receptor fires, completing the sequence and thus also firing the Door 0 Start Mediator. Since door 0 is 

now known to be the correct door, the Door 0 Bridge Mediator enables its expected effect event, the Door 0 Goal Mediator. The Door 

0 Goal Mediator now redirects motive entirely into the Maze Exit Room receptor. From there, motive will propagate into the maze 

navigation neurons (not shown) driving responses to move to the maze exit room. 

The neuron assembly is quiescent while the other 

neurons are at work navigating the maze, motivated to 

reach the maze exit room. Note that information 

reflecting the correct door 0 choice is stored in the 

enablement state of the Door 0 Goal Mediator, 

awaiting the firing of its cause, the Maze Exit Room 

receptor. Once Maze Exit Room fires, motive 

propagates fully into Open Door 0 to express its 

associated response, resulting in the achievement of the 

goal. 

 

A mediator consists of:  

 Level:

 
    0: contains receptor and motor events.  
 > 0: contains lower level mediator events.

   

 Neuron event sequence: for level 0 mediators, this 

is a {{receptor, motor}*, receptor} sequence.  

 Current event.  

 Enablement: firing “probability” given cause event 

firing.  

 Motive: driven through network from goal neurons 

when associated needs arise. 

 Notification list: mediators for which this mediator 

is an event. 

 

As each event neuron fires, the current event is 

advanced. When the effect (final) event fires, the 

mediator itself fires which notifies all its parent 

mediators and resets the current event to its cause 

(initial) event. If an event does not fire within a 

specified length of time, the current event is also reset 

to its cause event.  

The enablement of a mediator roughly represents a 

conditional firing probability based on the opportunity 
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given by the firing of its cause event. Enablement 

reflects how it performs when given opportunities: 

enablement = ∑motivefiring  / ∑motivefiring-opportunity       (1) 

Motive is used to weight firing opportunities, thus 

highly motivated firings and misfiring (time-outs) 

impact enablement more strongly. Conversely, for a 

low motivation firing opportunity, the enablement is 

less impacted. 

As previously noted, motive is injected into the 

network through neurons that are designated as goals, 

and as such are associated with needs. Fluctuations in 

need values are reflected in changing motive values. 

Motive may be driven into a mediator in two ways: 

 From a parent mediator for which it is an event. In 

this case the firing of the event is necessary for the 

firing of the parent. 

 From its effect event. In this case the mediator‟s 

effect event is the cause event of another mediator 

which is driving its cause, producing a “chaining” 

interaction between the mediators. 

In either case, motive is an influence to fire the 

mediator by firing motor neurons that produce a desired 

stimulus/response stream. If the mediator has a high 

enablement, meaning that its firing is reliably 

independent of context, it will drive input motive 

“down” into its current event to fire it. If it has a low 

enablement, it will drive input motive “up” into parent 

mediators for which it is an effect event in order to 

establish a context in which firing is more favorable. 

This is determined as follows: 

down-motive = input-motive × enablement /       

(enablement + ∑enablementeligible-parent )                      (2) 

up-motiveeligible-parent = (input-motive – down-motive) × 

(enablementeligible-parent  / ∑enablementeligible-parent )      (3) 

 

Eligible parent mediators are those which do not 

already index the mediator as a current event, since 

context has already been established by them. Motive is 

also attenuated as it propagates in order to avoid 

excessive propagation of motive. 

During the drive phase, motive is recorded in each 

neuron. For a mediator, this is used to update its 

enablement. For a receptor neuron, input motive is 

driven into parents in a manner similar to that used by 

mediators. For a motor neuron, motive is simply stored. 

Response selection is then a choice weighted by the 

motive stored in the motor neurons associated with each 

response. 

For learning new mediators, neuron firings which 

occur sequentially in a specified window of time are 

included in a mediator with the following probability: 

 

creation-probability = pcause-event × peffect-event           (4)  

 

pevent = (motive / MAX_MOTIVE)
MOTIVE_DAMPER  

×      (5) 

 (enablement / MAX_ENABLEMENT)
ENABLEMENT_DAMPER 

 

The probability is dependent on the motive and 

enablement of the firing events relative to maximum 

values. Receptors and motors use a constant for 

enablement. The damper parameters are a means to 

control the mediator creation rate. A new mediator is 

given an initial enablement which could be high enough 

to replace a low enablement mediator from the network. 

Its survival then depends on increasing its enablement 

through the update formula (1). 

 

2.2.3.2. Procedure.  For the metamaze task, a 

maximum of 200 learned mediators was allowed; of 

these, approximately 50 were found to be useful in 

performing the task. A constant need was associated 

with the goal room receptor, motivating Mona to seek 

the goal room. Mona‟s responses were overridden with 

the correct response in order to produce the desired 

sequence of stimuli/responses that would allow Mona 

to learn the goal paths. This proved quite effective: it 

was observed that Mona could learn some metamaze 

instance goal paths in a single trial. However, quick 

learning can be a double-edged sword: many neurons 

were also created that represented piece-parts of the 

desired paths. Some of these were useful for 

redundancy reasons, but others were “parasitic” in 

nature: they thrived and grew stronger along with the 

correct neurons, yet once strong enough to challenge 

for control they matched paths inappropriately and 

produced the wrong responses. A solution for this was 

to suppress the enablement update of a mediator that is 

“subsumed” by a temporally longer mediator. 

Training and testing was done in a similar fashion 

to the Elman and LSTM networks, except 200 training 

epochs were run. For testing, 100 trials of each test 

maze were run: since this was the first time that Mona 

was able to operate without forced responses, the extra 

trials were to observe any degradation in performance – 
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no degradation was noted. The score was calculated 

based on the percentage of trials that the goal room was 

reached without error. 

2.3. Q-Learning 

In addition to the Elman and Mona runs, Q-Learning 

was compared as a base level on the metamaze task 

since it keeps only the current room mark as state 

information, highlighting the importance of sequence 

learning. Although each room in a maze is uniquely 

marked, looping and unsuccessful door tries cause this 

to be a sequential task. The Q-Learning learning rate 

and discount parameters were set to 0.9, and the 

minimum Q-value set to 0.001. 

3. Results 

The results for non-context metamazes having 3 doors 

are shown in Figure 8, and the results for 5 doors are 

shown in Figure 9. These are averages for the 50 

selected metamazes. The Elman, LSTM, and Mona 

networks perform nearly perfectly for the 3 door mazes, 

and quite well (>90%) for the 5 door mazes. Q-

Learning was most successful in mazes with fewer goal 

paths, but did poorly overall, testifying to the sequential 

nature of the task. 

 

 

Fig. 8. Non-context 3 door performance. 

 

 

Fig. 9. Non-context 5 door performance. 

The results for non-modular context metamazes having 

3 doors are shown in Figure 10, and the results for 5 

doors are shown in Figure 11. These show a different 

story for the Elman network, becoming more 

pronounced as the number of rooms and the path 

lengths (as shown in Table 2) grows.  As expected, the 

Elman network loses context state information as the 

amount of intervening processing increases. LSTM and 

Mona perform respectably (>75%). Q-Learning, having 

no context state information to draw on, performs 

poorly. 

 

 

Fig. 10. Non-modular context 3 door performance. 

 

Fig. 11. Non-modular context 5 door performance. 

 

 

 

In Figures 12 and 13, the modularly trained Elman and 

LSTM networks show striking performance 

degradations. These poor performances indicate that the 

two types of training do not positively interact at testing 

time, a result expected for a monolithic architecture. 

This is a significant drawback, since the two parts of 

the task are essentially independent. Interestingly, 

Mona achieves superior performance with modular 

training than with non-modular (>90%), which is an 

encouraging result for two reasons: (1) modular training 

is simpler, involving fewer training sequences, and (2) 

one would plausibly expect to have better results 
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training an animal using a modular approach that places 

events that are to be associated closer together in time. 

Figures 5-7 shows one of the learned modular structures 

that allow Mona to succeed. Q-Learning was not 

attempted with modular learning since it relies on a 

single state-space to operate. 

 

 

Fig. 12. Modular context 3 door performance. 

 

 

Fig. 13. Modular context 5 door performance. 

4. Conclusions 

Results show good performance for the Elman, LSTM, 

and Mona networks on metamazes that do not impose 

the context learning requirement. The LSTM and Mona 

networks are also capable of learning the context maze 

task with non-modular training. Modular context 

learning tests indicate continued good performance for 

Mona; examination reveals independent yet cooperating 

neural structures formed by different training modules. 

The observation is that modular training leads to 

modular internal structures. 

The poor performance of the Elman and LSTM 

networks with modular training highlights the problem 

of using these types of neural networks on tasks having 

a dynamic nature that may cause components to 

change, necessitating retraining. This is a serious issue 

since so many real-world environments pose challenges 

that fall into this category. For these tasks it would be 

beneficial to be able to retrain only the portions that 

change and have interactions with the rest of the system 

remain functional.  

One of the original inspirations for Mona was to 

exhibit some properties, such as the rapid learning of 

novel and changing environments, which animals 

possess but conventional computer systems largely do 

not. Furthering this goal, Mona‟s learning and goal-

seeking capabilities have been utilized as the nervous 

system of simple creatures in a simulated world [18]. 

Using a combination of instinct evolution and 

experiential learning, the creatures are able to acquire 

foraging skills and knowledge to explore and exploit 

their environment. Knowledge gained in simulated 

environments has also laid the groundwork for work 

with learning robots. 

5.   Resources  

The C++ source code for Mona and the metamaze 

project are available at: 

www.itk.ilstu.edu/faculty/portegys/research/metamaze/

metamaze.zip 

It can be compiled with either gcc/make or Microsoft 

Visual Studio. 

Developments and other projects using Mona are on 

CodePlex (www.codeplex.com/mona). 

The author is currently with Microsoft and can be 

contacted at either tom.portegys@microsoft.com or 

portegys@gmail.com.  
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