
 A MAZE LEARNING COMPARISON OF ELMAN, LONG SHORT-TERM MEMORY,

AND MONA NEURAL NETWORKS

THOMAS E. PORTEGYS

School of Information Technology, Illinois State University, Campus Box 5150

Normal, Illinois, 61790, USA

Email: portegys@gmail.com

This study compares the maze learning performance of three artificial neural network architectures: an Elman

recurrent neural network, a Long Short-Term Memory (LSTM) network, and Mona, a goal-seeking neural network.

The mazes are networks of distinctly marked rooms randomly interconnected by doors that open probabilistically.

The mazes are used to examine two important problems related to artificial neural networks: (1) the retention of

long-term state information and (2) the modular use of learned information. For the former, mazes impose a context

learning demand: at the beginning of the maze, an initial door choice forms a context that must be remembered

until the end of the maze, where the same numbered door must be chosen again in order to reach the goal. For the

latter, the effect of modular and non-modular training is examined. In modular training, the door-associations are

trained in separate trials from the intervening maze paths, and only presented together in testing trials. All networks

performed well on mazes without the context learning requirement. Mona and LSTM performed well on context

learning with non-modular training; the Elman performance degraded as the task length increased. Mona also

performed well for modular training; both LSTM and Elman performed poorly with modular training.

Keywords: Maze learning; context learning; modular learning; Elman recurrent neural network; Long Short-Term

Memory network; Mona goal-seeking neural network.

1. Introduction

For decades researchers have used mazes as a means to

measure the learning capabilities of animals [1]. For

instance, the effects of a proposed memory-enhancing

drug may be tested on rats by observing how well they

learn mazes in comparison to a control group. More

recently mazes have been employed as a means to

investigate learning in artificial neural networks [2,3,4].

These studies typically use variations of a T-maze as a

test environment in which learning is accomplished

through exploration. The mazes used here are too

complex to be learned by exploration; they are

exploited through training, which also poses interesting

challenges to neural network learning.

This study compares the maze learning performance

of three artificial neural network architectures: an

Elman recurrent neural network, a Long Short-Term

Memory (LSTM) network, and Mona, a goal-seeking

neural network. In this experiment, a set of related

mazes is generated and presented to the neural network

for training and testing. The related mazes are instances

generated from a common probabilistic maze called a

metamaze such that any two instances might contain

common and divergent path segments. The aim is to

challenge a neural network with a task that demands

both sequence learning and the ability to discriminate

diverging paths.

An important function of many organisms is the

ability to use contextual information in order to increase

the probability of achieving goals [5,6,7]. For example,

a street address has a particular meaning only in the

context of the city it is in. Context learning demands the

retention of state information for an extended duration,

a challenge for most artificial neural networks. To test

context learning, at the beginning of the maze an initial

door choice forms a context that must be remembered

until the end of the maze, where the same numbered

door must be chosen again in order to reach the goal.

Thus the learner must retain this door association while

navigating the intervening path through the maze.

Two types of training are done for context learning:

modular and non-modular. In modular training, the

context door-associations are trained in separate trials

2 Portegys

from the intervening maze paths, and only presented

together in end-to-end testing trials. The maze entry and

exit rooms form interfaces connecting the modular

training sets. In non-modular training, the door-

associations and maze instances are presented together

as they are in the testing trials.

 Testing success with modular training suggests

modular internal representations. The issue of

modularity in neural networks is an important one:

monolithic (non-modular) neural networks such as the

classic feed-forward perceptron often store

representations of independent input spaces in a non-

modular fashion, making them difficult to scale and re-

train. Moreover, the biological neural networks of many

animals feature a great deal of modularity both in

function and structure. This allows them to re-train

dynamically, a significant survival advantage in the

face of a changing environment.

Azam‟s [8] survey of modular neural networks cites

the Hierarchical Mixture of Experts (HME) as a

prominent architecture. In this and several other

schemes, an a priori partitioning of the input space is

done in order to create a tree structure of neural

networks. Tan and Nolfi [9] devised a means of

autonomously partitioning the input space of a maze

learning task by recognizing a dynamical phase change

as an indicator of a transition to a different partition.

Optimally, each partition is then managed by a

dedicated recurrent neural network. This system was

able to learn a two-room maze but instabilities requiring

further study were also observed.

One of the aims of this project is to determine how

well the Mona network can modularly self-organize in

an autonomous manner without relying on adjunct

networks. Additionally, the issue of modularity in

learning systems may be thought of in relation to the

well-known AI frame problem [10]. The frame problem

is about things that change and things that remain the

same when an action is taken in the world. For learning,

the question is how knowledge is represented such that

when the world changes only the affected portions of

the representation are changed.

Elman networks are a type of Recurrent Neural

Network (RNN) having a state-retention capacity that

allows them to classify temporal input sequences,

which for the maze learning task consist of goal paths.

Elman networks have been widely studied and have

proven to be successful in a variety of tasks, such as

grammar [11,12] learning and text classification [13].

Another reason for selecting an Elman network for the

metamaze task is to observe how state information

degrades over time [14]. The context learning task is

used for this purpose. The Elman network used for the

maze task is described in a subsequent section.

The Long Short-Term Memory (LSTM) network

[14] is designed to allow state information to be

retained over extended periods of time through the use

of special activation units called memory blocks. LSTM

networks have been shown to solve tasks that require

long-term retention of state information [15]. One such

task, the Embedded Reber Grammar, bears some

similarity to the context learning task. The LSTM

network used for the maze task is described in a

subsequent section.

Although a connectionist architecture, Mona also

has elements of a state-based planning system. While

planners in artificial intelligence [16] are typically

symbolic and not connectionist systems, it seems clear

that neural networks must also be able to perform

planning if they are to function as biological networks

do. Mona has been successfully used on a number of

tasks, including cooperative nest-building [17] and

learning a 3D grid environment for a simulated foraging

robot [18]. Mona models the homeostatic need-

reduction mechanism that animals possess as an

integrated motivation mechanism designed to produce

responses to reach goals that reduce needs. It is

described more fully in a later section.

Q-Learning [19] was also compared as a base level

on the metamaze task since it keeps only the current

room mark as state information, underscoring the

importance of sequence learning.

2. Description

2.1. Metamazes

A metamaze is a network of uniquely marked rooms

interconnected by doors that open probabilistically. One

room serves as the maze entry and another as the exit,

which is the goal. The task is to move from the entry to

the exit room. An instance of a metamaze is generated

by resolving the probabilities that determine the open-

ability of the doors. Thus a metamaze may generate a

set of maze instances that are similar yet vary in some

details. For example, a path having a high probability

may appear in most instances, but not in all. The neural

Maze learning 3

networks are trained to follow optimal paths for a

specific set of instances.

Each room contains a fixed number of doors (with

one exception for context learning). A connection is a

randomly determined directional link from a door in a

source room to a target room. Doors without

connections are visible but cannot open. Each

connected door in a maze instance is constructed using

a probability that it will open. A door that will open

allows a learner to transition to the target room. If a

door does not open the learner remains in the source

room. A door may be thought of as a teleport control

that might not be connected to anything and that might

not work. If it does work the learner will observe that

the room marking is different in the target room.

A maze instance is determined by a metamaze and a

random number generator seed. Using the seeded

random number generator a resolution is made for each

connected door probability to determine its openability.

So a door with a 10% probability in the metamaze has a

10% chance of being openable in the instance, for

example. A path through a maze instance is a sequence

of rooms and door connections from the entry room to

the exit room.

In order to discover “interesting” maze instances for

the project, a program was written to randomly generate

and score metamazes of varying (5, 10, and 15)

numbers of rooms, with varying (3 and 5) numbers of

doors per room. Metamazes were scored primarily on

the number of paths and secondarily on the average

path length. The number of random connections per

metamaze grew with the number of rooms and doors. It

was also found that higher scoring (see below) mazes

were generated if connections were forced to be bi-

directional, that is, if room A had a connection to B,

then B also had a connection to A, although not

necessarily with the same numbered door. This allows

backtracking. For each metamaze, 10 instances were

generated and searched for goal paths. A set of

instances was then selected with the requirement that it

must be possible to train a learner to traverse a goal

path regardless of which instance is presented. In other

words, a properly trained learner can always solve a

maze without error, defined as trying a wrong door,

even though it may have to try doors that do not open

and loop to gain information about which instance it is

in. For each of the 6 possible maze dimension values

(rooms × doors), 1000 metamazes were generated and

the best 50 retained as suitable training mazes. Table 1

shows the average number of paths for the various

room and door combinations of the retained mazes.

Table 2 shows the average path lengths.

Table 1. Average metamaze goal paths.

 ROOMS

D
O

O
R

S
 5 10 15

3 1.46 1.62 2.36

5 1.76 3.34 3.62

Table 2. Average metamaze goal path length.

 ROOMS

D
O

O
R

S

 5 10 15

3 3.96 6.62 6.28

5 3.93 5.65 6.16

As the maze is navigated, knowledge of the specific

instance is revealed and can be utilized to find the goal.

To illustrate, consider the metamaze and its 3 instances

(A, B, and C) shown in Figure 1.

4 Portegys

Fig. 1. Example metamaze (top left) with instances, A (top right), B (bottom left), and C (bottom right).

Maze learning 5

Each vertex represents a room. Room 0 is the start

room and room 2 is the goal. In the metamaze, each

edge is a door annotated with the probability of it being

openable. Although each room actually has the same

number of doors, only doors that are connected to

rooms are shown for clarity. In the maze instances, the

open or closed resolution of the probabilities is denoted

by solid and dashed edges, respectively. The sequence

of rooms and connections visited for each instance is

also marked, so in C the path taken to the goal is rooms

0, 3, 2 via doors 1 and 2 respectively. Note that for

mazes A and B the learner also visits room 3 even

though it is blocked by the closed door 2. The learner

then returns to room 0 and proceeds to the goal via

room 1 (although using different doors in A and B).

The reason the learner is thusly trained is this: for maze

instance C, if the learner proceeds directly to room 1 it

will find itself blocked from the goal and also unable to

retract to room 0. So the successful scheme is to train

the learner to try room 3 first.

The maze search algorithm finds the shortest goal

path “knowing” only what the learner can know at

every step; initially the learner knows only that the

maze is one of a set of possible instances. The aim is to

find paths that achieve the goal. This is an interesting

problem in its own right and as it turns out is not a

simple algorithm, although outside the scope of this

paper. It is included in the download noted in the

conclusion. As mentioned previously, the maze

discovery program invokes the search algorithm for a

set of instances and selects a subset of instances that

always allow a learner to find a path to the goal.

2.1.1. Context learning mazes

A portion of this study is devoted to the learning and

application of context information, which is represented

as an additional maze learning task. At the beginning of

the maze, an initial door choice forms a context that

must be remembered until the end of the maze, where

the same numbered door must be chosen again in order

to reach a goal. The learner must learn both the door

associations and the intervening path through the maze

in order to complete a trial successfully. An example of

such a maze is shown in Figure 2.

Fig. 2. A context learning maze.

In the start room only one of the possible doors is

visible and is open to the maze entry room. The entry-

to-exit room portion of the maze is an instance of a

metamaze as described above, where the exit room now

has door choices. Here the learner must choose the

same numbered door as that leading from the start room

to the entry room in order to reach the goal room. It can

be seen that the context in this problem is to retain

information about which door led from the start room in

order to repeat this choice at the exit room. A single

wrong door try is counted as a trial failure. In order to

ensure that the context information varies, for each trial

the door leading from the start room is randomly

determined.

2.2. Neural networks

2.2.1. Elman recurrent neural network

An Elman network, also known as a Simple Recurrent

Network, contains feedback units that allow it to retain

temporal state information useful in classifying

sequential input patterns. These feedback units reside in

a context layer as shown in Figure 3. Each hidden layer

unit has a connection to a corresponding context unit

with a fixed weight of 1. All other weights are trainable.

A processing step is then:

1. Set input unit activations to input pattern.

2. Compute hidden unit activations using input from

input and context layers.

3. Compute output unit activations.

4. Copy new hidden unit activations to context layer.

The Elman network was created with the Stuttgart

Neural Network Simulator (SNNS) version 4.2 (www-

ra.informatik.uni-tuebingen.de/SNNS/). For maze

learning the network was configured with 25 hidden

http://www-ra.informatik.uni-tuebingen.de/SNNS/
http://www-ra.informatik.uni-tuebingen.de/SNNS/

6 Portegys

and 25 context units, which proved to perform well for

the basic task. For a maze with 5 doors there were 10

input units, 5 to encode the room mark and 5 for the

doors, and 5 output units for the door selection. The

network was initialized with the SNNS “JE_Weights”

initialization function, standard for Elman networks.

The initial connection weights were randomly set to

values between -1 and 1, and the initial activation of the

context units was 0. The learning function was

“JE_BP” with a default learning rate of 0.2, and the

update function was “JE_Order”, both typical for

Elman networks.

Fig. 3. Elman recurrent network.

The following training and testing procedure was used

for each of the 50 selected metamazes.

For non-context metamaze training, a training

pattern file was generated for each metamaze instance,

each containing a unique goal path consisting of a

sequence of input/output pairs, where the room mark

and visible doors comprise the input and the correct

door choice the output. The network was trained in

1000 epochs, where in each epoch all the training

patterns were presented in a random order. The

activation states of the neurons were reset before each

sequence presentation. For testing, the connection

weights were frozen and the patterns were presented in

order. A pattern was scored as correct if the network

produced the correct sequence of outputs; otherwise it

was scored as incorrect.

For non-modular context learning, pattern files were

created for all possible metamaze instance and context

door combinations. So if there were 3 maze instances

and 5 doors per room, there were 15 pattern files, each

containing an “end-to-end” sequence from start room to

goal. These were used for both training and testing.

Again, there were 1000 training epochs, with all the

patterns randomly presented each epoch. Testing

consisted of presenting all the patterns in the set and

scoring them based on producing the correct output

sequence.

For modular context training, there were 2 sets of

files. One set trained the maze instance paths, and was

thus identical to the non-context set, and the other

trained the context door associations. Each context door

association file contained 2 patterns: a start room

pattern and an exit room pattern. So for example the

door 0 training file contained a start room pattern with

only door 0 visible as input and the output being the

choice of door 0; the second pattern was the exit room

with all doors visible as input, and the output again

being door 0. Modular context testing used the same set

of end-to-end patterns used for the non-modular context

testing. In each of the 1000 training epochs, all the

patterns in the 2 training sets were randomly presented.

Testing followed the training epochs.

2.2.2. Long Short-Term Memory (LSTM) neural

network

A problem in training a simple recurrent neural network

such as the Elman is that the gradient of the error

quickly vanishes as the time lag between the output and

the relevant input increases, leading to the inability to

train the retention of long-term state information.

Fig. 4. LSTM single-celled memory block.

Maze learning 7

In the LSTM network, the hidden units of a

conventional recurrent neural network can be replaced

by memory blocks, each of which contains one or more

memory cells. A memory block containing a single cell

is shown in Figure 4. The cell is a simple linear unit

with a single self-recurrent connection with weight set

to 1. In the absence of any other input, this connection

serves to preserve the cell's current state indefinitely.

Deciding what information to store, and when to output

that information lies with a multiplicative input and

output gating unit, respectively.

The LSTM code was obtained from the Institute of

Bioinformatics at the Johannes Kepler University

(www.bioinf.jku.at/software/lstm). After some trial-

and-error tuning, the network was configured with 8

single-celled memory blocks and 10 hidden units, and

the learning rate set at 0.1. The inputs and outputs were

encoded as for the Elman network. Training and testing

were also done as for the Elman network, except that

2500 training epochs were performed.

2.2.3. Mona goal-seeking neural network

2.2.3.1. Description. Mona is a model based on the

rationale that brains are goal-seeking neural networks.

It has a simple interface with the environment: all

knowledge of the state of the environment is absorbed

through senses. Responses are expressed to the

environment with the goal of eliciting sensory inputs

which are internally associated with the reduction of

needs.

Events can be drawn from sensors, responses, or the

firing states of component neurons, calling for three

types of neurons: those attuned to sensors are receptors,

those associated with responses are motors, and those

mediating other neurons are mediators. A mediator

presides over a sequence of neuron firing events,

retaining state information and driving need-based

motive through the network to activate motor responses

that will move the system toward goals that reduce

needs. Mediators can be structured in hierarchies

representing environmental contexts. The state of the

environment is represented by the configuration and

enablement of mediator neurons. An enabled mediator

can be thought of as representing a sequence of stimuli

and responses that will reliably occur in the

environment.

A processing step in Mona is as follows:

1. Sense. Environmental stimuli are sensed, firing

appropriate receptors. These firings cascade

upward into overarching mediators, creating an

updated network firing state.

2. Enable. Using the firing state of the network, the

enablements of component neurons are updated.

For example, if a mediator‟s cause event fires, it

can enable its effect event indicating that the

environmental situation corresponding to the effect

event is pending.

3. Learn. Firing neurons are matched with previous

firing events to hypothesize causal sequences that

are captured by the creation of new mediators.

4. Drive. The reduction of needs is associated with

the firing of associated goal neurons. It is through

these neurons that motive propagates into the

network. Based on needs, goals, and the updated

enablement state of the network, motive

accumulates in appropriate motor neurons.

Multiple needs can either compete or cooperate in

driving the network. A need whose level is low

contributes less drive than one whose level is high.

5. Respond. A relatively highly motivated motor

neuron activates a response.

As an example, what follows in Figures 5-7 is a

sequence that illustrates several processing steps in an

actual assembly of neurons that control a door

association in the context learning portion of the maze

task. There are 3 mediators: one controlling the events

at the start room, one for the maze exit room, and a

mediator connecting the other mediators. This assembly

interacts with, but is modularly independent of, other

neurons that govern the inner maze navigation. The

assembly shown is for door 0; other door associations

will have their own assemblies.

Several notational definitions must first be given.

The triangles are receptor neurons, the inverted

triangles are motor neurons, and the ovals are

mediators. Mediators are linked to a single cause

neuron, a single effect neuron, and 0 or more

intervening intermediate neurons. The „*‟ tag on a link

signifies which event neuron is expected to fire next. A

firing neuron is shown by a double outline. Mediator

neurons also display their enablement state as a value

from 0 to 1. Neurons having a goal value are annotated.

Finally, motive is shown in block arrows driving

through the network. The labels on the neurons were

placed manually for descriptive reasons.

http://www.bioinf.jku.at/software/lstm

8 Portegys

Fig. 5. The initial state of the Door 0 Correspondence neuron assembly in a maze with 5 doors per room. Since the Door 0 Goal

Mediator is only partially enabled (20% a priori chance that door 0 is correct), motive propagated from Goal Room neuron splits

accordingly, with 80% going to the Door 0 Bridge Mediator to further enable the Door 0 Goal Mediator neuron. Within the Door 0

Bridge Mediator, motive is shunted into the expected component event, the Door 0 Start Room receptor neuron.

Maze learning 9

Fig. 6. The Door 0 Start Room receptor neuron fires when the learner senses the start room having door 0 as the only possible choice.

The next expected event is the firing of the Open Door 0 motor neuron.

10 Portegys

Fig. 7. The Maze Entry Room receptor fires, completing the sequence and thus also firing the Door 0 Start Mediator. Since door 0 is

now known to be the correct door, the Door 0 Bridge Mediator enables its expected effect event, the Door 0 Goal Mediator. The Door

0 Goal Mediator now redirects motive entirely into the Maze Exit Room receptor. From there, motive will propagate into the maze

navigation neurons (not shown) driving responses to move to the maze exit room.

The neuron assembly is quiescent while the other

neurons are at work navigating the maze, motivated to

reach the maze exit room. Note that information

reflecting the correct door 0 choice is stored in the

enablement state of the Door 0 Goal Mediator,

awaiting the firing of its cause, the Maze Exit Room

receptor. Once Maze Exit Room fires, motive

propagates fully into Open Door 0 to express its

associated response, resulting in the achievement of the

goal.

A mediator consists of:

 Level:

 0: contains receptor and motor events.
 > 0: contains lower level mediator events.

 Neuron event sequence: for level 0 mediators, this

is a {{receptor, motor}*, receptor} sequence.

 Current event.

 Enablement: firing “probability” given cause event

firing.

 Motive: driven through network from goal neurons

when associated needs arise.

 Notification list: mediators for which this mediator

is an event.

As each event neuron fires, the current event is

advanced. When the effect (final) event fires, the

mediator itself fires which notifies all its parent

mediators and resets the current event to its cause

(initial) event. If an event does not fire within a

specified length of time, the current event is also reset

to its cause event.

The enablement of a mediator roughly represents a

conditional firing probability based on the opportunity

Maze learning 11

given by the firing of its cause event. Enablement

reflects how it performs when given opportunities:

enablement = ∑motivefiring / ∑motivefiring-opportunity (1)

Motive is used to weight firing opportunities, thus

highly motivated firings and misfiring (time-outs)

impact enablement more strongly. Conversely, for a

low motivation firing opportunity, the enablement is

less impacted.

As previously noted, motive is injected into the

network through neurons that are designated as goals,

and as such are associated with needs. Fluctuations in

need values are reflected in changing motive values.

Motive may be driven into a mediator in two ways:

 From a parent mediator for which it is an event. In

this case the firing of the event is necessary for the

firing of the parent.

 From its effect event. In this case the mediator‟s

effect event is the cause event of another mediator

which is driving its cause, producing a “chaining”

interaction between the mediators.

In either case, motive is an influence to fire the

mediator by firing motor neurons that produce a desired

stimulus/response stream. If the mediator has a high

enablement, meaning that its firing is reliably

independent of context, it will drive input motive

“down” into its current event to fire it. If it has a low

enablement, it will drive input motive “up” into parent

mediators for which it is an effect event in order to

establish a context in which firing is more favorable.

This is determined as follows:

down-motive = input-motive × enablement /

(enablement + ∑enablementeligible-parent) (2)

up-motiveeligible-parent = (input-motive – down-motive) ×

(enablementeligible-parent / ∑enablementeligible-parent) (3)

Eligible parent mediators are those which do not

already index the mediator as a current event, since

context has already been established by them. Motive is

also attenuated as it propagates in order to avoid

excessive propagation of motive.

During the drive phase, motive is recorded in each

neuron. For a mediator, this is used to update its

enablement. For a receptor neuron, input motive is

driven into parents in a manner similar to that used by

mediators. For a motor neuron, motive is simply stored.

Response selection is then a choice weighted by the

motive stored in the motor neurons associated with each

response.

For learning new mediators, neuron firings which

occur sequentially in a specified window of time are

included in a mediator with the following probability:

creation-probability = pcause-event × peffect-event (4)

pevent = (motive / MAX_MOTIVE)
MOTIVE_DAMPER

× (5)

 (enablement / MAX_ENABLEMENT)
ENABLEMENT_DAMPER

The probability is dependent on the motive and

enablement of the firing events relative to maximum

values. Receptors and motors use a constant for

enablement. The damper parameters are a means to

control the mediator creation rate. A new mediator is

given an initial enablement which could be high enough

to replace a low enablement mediator from the network.

Its survival then depends on increasing its enablement

through the update formula (1).

2.2.3.2. Procedure. For the metamaze task, a

maximum of 200 learned mediators was allowed; of

these, approximately 50 were found to be useful in

performing the task. A constant need was associated

with the goal room receptor, motivating Mona to seek

the goal room. Mona‟s responses were overridden with

the correct response in order to produce the desired

sequence of stimuli/responses that would allow Mona

to learn the goal paths. This proved quite effective: it

was observed that Mona could learn some metamaze

instance goal paths in a single trial. However, quick

learning can be a double-edged sword: many neurons

were also created that represented piece-parts of the

desired paths. Some of these were useful for

redundancy reasons, but others were “parasitic” in

nature: they thrived and grew stronger along with the

correct neurons, yet once strong enough to challenge

for control they matched paths inappropriately and

produced the wrong responses. A solution for this was

to suppress the enablement update of a mediator that is

“subsumed” by a temporally longer mediator.

Training and testing was done in a similar fashion

to the Elman and LSTM networks, except 200 training

epochs were run. For testing, 100 trials of each test

maze were run: since this was the first time that Mona

was able to operate without forced responses, the extra

trials were to observe any degradation in performance –

12 Portegys

no degradation was noted. The score was calculated

based on the percentage of trials that the goal room was

reached without error.

2.3. Q-Learning

In addition to the Elman and Mona runs, Q-Learning

was compared as a base level on the metamaze task

since it keeps only the current room mark as state

information, highlighting the importance of sequence

learning. Although each room in a maze is uniquely

marked, looping and unsuccessful door tries cause this

to be a sequential task. The Q-Learning learning rate

and discount parameters were set to 0.9, and the

minimum Q-value set to 0.001.

3. Results

The results for non-context metamazes having 3 doors

are shown in Figure 8, and the results for 5 doors are

shown in Figure 9. These are averages for the 50

selected metamazes. The Elman, LSTM, and Mona

networks perform nearly perfectly for the 3 door mazes,

and quite well (>90%) for the 5 door mazes. Q-

Learning was most successful in mazes with fewer goal

paths, but did poorly overall, testifying to the sequential

nature of the task.

Fig. 8. Non-context 3 door performance.

Fig. 9. Non-context 5 door performance.

The results for non-modular context metamazes having

3 doors are shown in Figure 10, and the results for 5

doors are shown in Figure 11. These show a different

story for the Elman network, becoming more

pronounced as the number of rooms and the path

lengths (as shown in Table 2) grows. As expected, the

Elman network loses context state information as the

amount of intervening processing increases. LSTM and

Mona perform respectably (>75%). Q-Learning, having

no context state information to draw on, performs

poorly.

Fig. 10. Non-modular context 3 door performance.

Fig. 11. Non-modular context 5 door performance.

In Figures 12 and 13, the modularly trained Elman and

LSTM networks show striking performance

degradations. These poor performances indicate that the

two types of training do not positively interact at testing

time, a result expected for a monolithic architecture.

This is a significant drawback, since the two parts of

the task are essentially independent. Interestingly,

Mona achieves superior performance with modular

training than with non-modular (>90%), which is an

encouraging result for two reasons: (1) modular training

is simpler, involving fewer training sequences, and (2)

one would plausibly expect to have better results

Maze learning 13

training an animal using a modular approach that places

events that are to be associated closer together in time.

Figures 5-7 shows one of the learned modular structures

that allow Mona to succeed. Q-Learning was not

attempted with modular learning since it relies on a

single state-space to operate.

Fig. 12. Modular context 3 door performance.

Fig. 13. Modular context 5 door performance.

4. Conclusions

Results show good performance for the Elman, LSTM,

and Mona networks on metamazes that do not impose

the context learning requirement. The LSTM and Mona

networks are also capable of learning the context maze

task with non-modular training. Modular context

learning tests indicate continued good performance for

Mona; examination reveals independent yet cooperating

neural structures formed by different training modules.

The observation is that modular training leads to

modular internal structures.

The poor performance of the Elman and LSTM

networks with modular training highlights the problem

of using these types of neural networks on tasks having

a dynamic nature that may cause components to

change, necessitating retraining. This is a serious issue

since so many real-world environments pose challenges

that fall into this category. For these tasks it would be

beneficial to be able to retrain only the portions that

change and have interactions with the rest of the system

remain functional.

One of the original inspirations for Mona was to

exhibit some properties, such as the rapid learning of

novel and changing environments, which animals

possess but conventional computer systems largely do

not. Furthering this goal, Mona‟s learning and goal-

seeking capabilities have been utilized as the nervous

system of simple creatures in a simulated world [18].

Using a combination of instinct evolution and

experiential learning, the creatures are able to acquire

foraging skills and knowledge to explore and exploit

their environment. Knowledge gained in simulated

environments has also laid the groundwork for work

with learning robots.

5. Resources

The C++ source code for Mona and the metamaze

project are available at:

www.itk.ilstu.edu/faculty/portegys/research/metamaze/

metamaze.zip

It can be compiled with either gcc/make or Microsoft

Visual Studio.

Developments and other projects using Mona are on

CodePlex (www.codeplex.com/mona).

The author is currently with Microsoft and can be

contacted at either tom.portegys@microsoft.com or

portegys@gmail.com.

References

1. H. A. Carr 1913, “Maze studies with the white rat”. I.

Normal animals. J. Anim. Behav. 7: 259-275.

2. Y. Yamauchi and R. Beer 1995, “Sequential behavior

and learning in evolved dynamical neural networks”.

Adaptive Behavior, 2(3):219-246.

3. J. Blynel and D. Floreano 2003, “Exploring the T-Maze:

Evolving Learning-Like Robot Behaviors using

CTRNNs”. In Raidl, G. et al. (Eds.) Applications of

Evolutionary Computing, Heidelberg: Springer Verlag.

4. C. Johansson and A. Lansner 2002, “A neural

reinforcement learning system”. Tech. Rep. TRITA-NA-

P0215 Dept. of Numerical Analysis and Computing

Science Royal Institute of Technology, Stockholm,

Sweden.

5. R. Turner 1998, “Context-Mediated Behavior for

Intelligent Agents”, International Journal of Human-

Computer Studies special issue on "Using Context in

Applications", 48(3), pp. 307-330.

6. R. Sun and C.L. Giles 2001, “Sequence Learning: From

Recognition and Prediction to Sequential Decision

Making”, IEEE Intelligent Systems, 16(4).

0

20

40

60

80

100

5 10 15

Rooms

S
u

c
c
e
s
s
 % Mona

LSTM

Elman

http://www.itk.ilstu.edu/faculty/portegys/research/meta-maze/meta-maze.zip
http://www.itk.ilstu.edu/faculty/portegys/research/meta-maze/meta-maze.zip
http://www.codeplex.com/mona

14 Portegys

7. T. Portegys 2005, “Learning Environmental Contexts in

a Goal-Seeking Neural Network”, Journal of Intelligent

Systems, Vol. 16, No. 2.

8. F. Azam 2000, “Biologically Inspired Modular Neural

Networks”, Ph.D. Dissertation submitted to Virginia

Polytechnic Institute and State University.

9. J. Tani and S. Nolfi 1999, “Learning to perceive the

world as articulated: An approach for hierarchical

learning in sensory-motor systems”. Neural Networks,

12(7–8):1131–1141.

10. D. Dennett 1984, “Cognitive Wheels: The Frame

Problem in AI”. In Minds, Machines, and Evolution. C.

Hookway, ed. pp. 128-151. Cambridge University Press.

11. P. Rodriguez, J. Wiles and J. Elman 1999, “A recurrent

neural network that learns to count”. Connection

Science, 11, 5-40.

12. A. Smith 2003, “Grammar Inference Using Recurrent

Neural Networks”, Department of Computer Science,

University of San Diego, California,

www.cse.ucsd.edu/~atsmith/

13. J. Farkas 1995, “Document classification and recurrent

neural networks”, Proceedings of the 1995 conference of

the Centre for Advanced Studies on Collaborative

research, p.21, November 07-09, Toronto, Ontario,

Canada.

14. S. Hochreiter and J. Schmidhuber 1997, “Long short-

term memory”, Neural Computation, 9(8), 1735-1780.

15. F. Gers, J. Schmidhuber and F. Cummins 2000,

“Learning to forget: Continual prediction with LSTM”,

Neural Computation, 12(10), 2451-2471.

16. S. Benson and N. Nilsson 1995, “Reacting, Planning and

Learning in an Autonomous Agent”, Machine

Intelligence 14, Edited by K.Furukawa, D. Michie, and

S. Muggleton. Oxford: Clarendon Press.

17. T. Portegys 2001, “Goal-Seeking Behavior in a

Connectionist Model”, Artificial Intelligence Review, 16

(3):225-253.

18. T. Portegys 2007, “Instinct and Learning Synergy in

Simulated Foraging Using a Neural Network”, The 2007

International Conference on Artificial Intelligence and

Pattern Recognition (AIPR-07), Orlando, Florida, USA.

19. C. Watkins 1989, “Learning from Delayed Rewards”,

Thesis, University of Cambridge, England.

