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Abstract 
 

Instinct and experience are shown to form a potent 
combination to achieve effective foraging in a simulated 
environment. A neural network capable of evolving 
instinct-related neurons and learning from experience is 
used as the brain of a simple foraging creature that must 
find food and water in a 3D block world. Instincts 
provide basic tactics for unsupervised exploration of the 
world, allowing pathways to food and water to be 
learned. The combination of both instinct and experience 
was found to be more effective than either alone. As a 
comparison, neural network learning also proved 
superior to Q-Learning on the foraging task. 
 
1. Introduction 
 

Foraging is an essential activity for many species, 
including some human societies. It thus also provides a 
valuable test bed for behavioral simulation with an aim 
toward artificial animal intelligence. In some organisms 
foraging consists of a combination of instinctive and 
learned behaviors. For example, honey bees will search 
their environment for nectar sources, learning their 
locations through visual cues and communicating this 
information to other bees [11]. Ants also forage and use 
pheromone signals to mark the location of food sources in 
the environment for further exploitation. The 
computational field of Ant Colony Optimization (ACO) 
[2,3] is largely based on this phenomenon. 

Due to their similarity to natural nervous systems, 
artificial neural networks seem the most fruitful means of 
achieving generalized systems from the solutions of 
specific problems like foraging. Thus a neural network 
was chosen for the foraging task. Over the past 15 years a 
number of other systems have studied foraging and 
related problems with neural networks. Zhou and Shen 
[12] constructed a system that allows foraging “bugs” to 
learn an environment containing food, obstacles, and 
competing bugs. Their network learned from exposure to 
two-epoch trial cases that shaped an abstract force field 
gradient which in turn allowed test cases to be 
categorized with similar trials. Erdur and Güngör [4] 
follow a theme similar to this project in utilizing a 
combination of evolution with a genetic algorithm and 
experiential Hebbian learning to modify the neural 

network configuration to produce effective foraging as 
well as other behaviors. Nolfi and Parisi [5] pointed out 
that although evolution is a good way to get reasonable 
initial behavior, learning is indispensable to adapt to 
specific and changing conditions. Mazes have also been 
employed as an environment to investigate goal-seeking 
learning in artificial neural networks [1,10]. 

This study is believed to be novel in the way it 
combines instinctive behavior as a means of training 
experiential learning. This is a plausible counterpart to the 
way simple animals learn, and is therefore a useful 
approach to simulating them. The way this works in the 
foraging task is as follows: instincts guide the creature to 
effectively explore its environment, producing a stream of 
stimuli and responses which are then incorporated into 
new neurons recording pathways in the environment. 
These learned neurons are reinforced by consistent 
repetition as well as by association with the acquisition of 
food and water goals. Over trials the learned network 
often overrides instincts to guide the creature directly 
along paths to food and water. 

The Mona goal-seeking neural network was used for 
this task. Mona has been shown to be capable of 
supporting instinct evolution to solve the Monkey and 
Bananas Problem [7], as well as effectively learning 
mazes requiring the retention of context information over 
time [6]. 

Q-Learning [9], a well-known reinforcement learning 
technique that is amenable to stimulus-response search 
space tasks, was used as a comparison to the neural 
network. 

 
1.1. A brief overview of Mona 
 

Mona is based on the rationale that brains are goal-
seeking entities. It has a simple interface with the 
environment: all knowledge of the state of the 
environment is absorbed through senses. Responses are 
expressed to the environment with the goal of eliciting 
sensory inputs which are internally associated with the 
reduction of needs. 

Events can be drawn from sensors, responses, or the 
states of internal neurons, calling for three types of 
neurons. Neurons attuned to sensors are receptors, those 
associated with responses are motors, and those mediating 
other neurons are mediators. Mediators can be structured 
in hierarchies representing environmental contexts. A 



mediator neuron controls the transmission of need 
through and the enablement of its component neurons. 

To elucidate by example, consider this somewhat 
whimsical task: let Mona be a mouse that has been out 
foraging in a house and now wishes to return back to her 
mouse-hole in a certain room. For the sake of keeping 
peace with her fellow mice, she must not make the 
mistake of going into a hole in another room. Figure 1 
shows her neural network at this juncture. 

 
 

 
Figure 1. Initial mouse network 

 
The triangle-shaped object at the bottom is the receptor 

neuron that fires once she has reached her hole; the 
inverted triangles are motor neurons that accomplish the 
responses of going to the correct room (Go Room), and 
going into the hole (Go Hole). The ellipses are mediator 
neurons. Each is linked up to a cause and effect event 
neuron. The “Hole Ready” mediator is not enabled, 
reflecting the importance of not going into a hole in the 
wrong room. The “Room Ready” mediator is enabled, 
signifying an expectation that if its cause event fires, its 
effect will also fire. 

The “Home!” receptor neuron has a high goal value, 
indicating that it is associated with a need. Because of 
this, motive influence propagates into the network, 
flowing into motor neurons whose firings will navigate to 
the goal. Since the “Hole Ready” neuron is not enabled, 
the motive bypasses the “Go Hole” motor neuron in 
search of a mediator whose firing will enable “Go Hole”. 
Since “Hole Ready” is an effect of “Room Ready”, it 
flows into the “Go Room” motor via the enabled “Room 
Ready” mediator and causes it to fire (double outline).The 

flow of motive illustrates how mediators representing 
contexts work together. The appropriate context for “Hole 
Ready” is “Room Ready”, which means that the latter 
should necessarily contribute something to the former in 
order to enable it. This something is called a wager. A 
wager temporarily modifies the enablement of a mediator 
that is the effect event of another mediator. It is called a 
wager because the base-level enablement of the wagering 
mediator will be evaluated based on subsequent firing of 
the effect neuron. 

In Figure 2 the “Go Room” cause firing can be 
understood as a conditional probability event: given that 
Mona is in the correct room (“Room Ready”), she is quite 
certain that she can go into her own hole. This 
accomplished by a wager from “Room Ready”, triggered 
by “Go Room” that boosts the enablement of “Hole 
Ready”. After this enablement occurs, motive flows into 
the “Go Hole” motor neuron, causing it to fire. 
Subsequently the Mona senses that she is home in her 
hole. 

 
Figure 2. Final mouse network 

 
 
2. Description 
 

A muzz is a creature that lives in a 3D block world 
such as that shown in Figure 3. The right panel of the 
display shows a top view of the world, and the left panel 
shows the muzz in the upper left corner of the world as 
viewed by another muzz facing it. Blocks are randomly 
marked with letters of the English alphabet. Striped ramps 
also may lead to platforms of various heights. A 
mushroom (a small circular shape from the top view) and 



a pool (a larger circular shape) also appear somewhere in 
the world as a food and water source for the muzz 
respectively. 
 

 
Figure 3. A muzz world 

 
A muzz must forage for mushrooms and water in this 

world. A muzz has the following sensory capabilities: 3 
sensors for detecting if the way is open to move in the 
forward, right, and left directions; a sensor to detect the 
terrain in the forward direction: { platform, wall, drop off, 
ramp up, ramp down }; and an object sensor for detecting 
objects in the forward direction: { mushroom, pool, muzz, 
empty, <block letter> }. Its response repertoire consists 
of: wait, move forward, turn right or left, eat, and drink. 

A muzz also has 3 needs: food, water, and foraging. 
The forage need is based on a fraction of the maximum 
food or water need, which means when they are satisfied 
the muzz has no need of foraging. Initially, all of the 
needs are positive, meaning that they may compete to 
drive the muzz’s responses. In other words, a learned path 
to a pool may “vie” with a different path to a mushroom. 
By attenuating need-derived motives as they drive 
through the network, the path to the closest goal will be 
preferred. This is assuming that the need for water and 
food are equal, which is the case in this study. Once a 
need has been satisfied, e.g. by drinking water, only 
motives associated with other positive needs will drive 
the network toward goals satisfying those needs.  
 
2.1. Instincts 
 

Receptor neurons for sensing mushrooms and water 
were initially placed into the neural network and given 
goal values associated with the reduction of hunger and 
thirst respectively. These were terminal goals for learned 

mediators (see learning section). Upon sensing a 
mushroom a muzz will automatically eat it if it is hungry. 
The same goes for a pool and drinking. 

Three mediator neurons were also “hard wired” into 
the muzz to implement foraging instincts. One of them 
associates the “forward open” receptor neuron with the 
“move forward” response. The others associate receptors 
indicating openings to the right and left with turning right 
and left respectively. The goal values of these instinct 
mediators determine the probability of expressing the 
movement responses. These are critical values, since it is 
possible to set these such that foraging fails completely. 
For example, if the move forward mediator always 
dominates, the muzz will never turn down a side pathway 
that may lead to a goal, or will always follow walls and 
never explore an open space. If the turn right mediator 
dominates, on the other hand, the muzz will rotate 
endlessly in an open area. To determine effective settings, 
an evolutionary selection procedure (see procedure 
section) was used to select the instinct mediator goal 
values to produce effective foraging. These values were 
evolved in the presence of learning to achieve synergistic 
behavior. 
 
2.2. Learning 
 
    

 
Figure 4. Muzz approaching mushroom 

 
As foraging proceeds, a stream of sensory inputs and 

responses is generated. The neural network creates new 
receptor and mediator neurons to record these streams. 
The Mona neural network prefers to retain mediators that 
excel at being reliable/repeatable or lead to need-reducing 
goals, which in this task are the mushroom and pool 
sensing receptors. In this study mediators were capped at 



a maximum of 200, which, coupled with the exploratory 
nature of foraging, meant that most learned mediators 
were eventually destroyed. 

As an example, Figure 4 shows a muzz ascending a 
ramp toward a mushroom on the platform above. Figure 5 
is an annotated snapshot of the mediator controlling this 
activity, showing the sequence of stimuli and responses 
involved. 
 

 
Figure 5. Mushroom seeking mediator neuron 

 
2.3. Procedure 
 

An initial population of 40 muzzes was generated and 
given random foraging instinct values. For each trial, a 
single muzz, mushroom and pool were placed in the 
world, and the muzz allowed to forage for 500 response 
steps. The fitness of a muzz was a function of whether it 
found food and/or water, and by how quickly it did so. 
The fittest 20 muzzes were used to create the next 
generation through mutation and mating. Mutation 
consisted of copying learned neurons into the offspring 
and probabilistically (10%) randomizing instinct goal 
values. Mating consisted of randomly choosing instinct 
goal values from a parent and randomly copying the 
strongest neurons from either parent into the offspring 
until the maximum of 200 was reached. Since each 
neuron is uniquely identified by a recursively computed 
MD5 hash, duplicating neurons was prevented. For an 
individual evolution run, the world configuration, 
consisting of the topography and object locations, was the 
same; these varied for different runs. Each evolution run 
proceeded for 30 generations. A set of 25 runs was done 
for 3 world dimensions: 4x4, 8x8, and 12x12.  
 
2.4. Q-Learning 
 

The block world presents a search space in which a 
stimulus-response stream can take a muzz from an initial 
point to a foraging goal. Consequently it was chosen as a 
comparison to the neural network. Just as for neural 
network experiential learning, Q-Learning was initially 
guided by foraging instincts. To tune them to work 

together, several Q-Learning parameters, shown in Table 
1, were evolved in conjunction with instincts. This was 
done along the lines of the instinct evolution; hence the 
Q-Learning parameters of a mutant muzz were set to 
randomized values within minimum and maximum 
values. Also, since there were two goals, water and 
mushrooms, there were actually two concurrent Q-
Learning processes, each sensitive to one of the goals. 
Each contributed to response selection as long as its 
respective goal was unsatisfied, which is a mechanism 
also incorporated in the neural network. Thus, combined 
with instincts, there were possibly three influences on 
response selection. 
 

Table 1. Q-Learning parameters 
Name Initial Minimum Maximum 
Reward 1.0 .001 5.0 
Q value .001 .001 1.0 
Learning rate .9 .1 .9 
Rate attenuation .9 .1 .9 
Discount .9 .1 .9 

 
3. Results 
 

For each world dimension setting, the fittest 10 muzzes 
for each of the 25 runs were tested, scored, and averaged 
under a variety of conditions to create the graphs shown 
below. The score was how many response steps out of a 
maximum of 500 were needed to get both food and water. 
Table 2 provides the legend for the graph symbols. 
 

Table 2. Graph symbol legend 
FI, ~FI Foraging instincts enabled/not enabled 
LC, ~LC Learning capability enabled/not enabled 
LE, ~LE Learning experience used/not used 
QLE,~QLE Q-Learning experience used/not used 

 
Figures 6, 7, and 8 show the 4x4, 8x8, and 12x12 

world performances respectively. As observed, scaling 
the world for the most part seems to scale the results 
accordingly. In the first base case experiment (~FI,~LC), 
the muzzes were “lobotomized” by disabling both 
foraging instincts and learning capability. In most 
configurations, the muzzes were simply unable to locate 
food and water within the 500 step limit. Some 
configurations placed the muzz, mushroom, and pool 
close enough to allow success by making random 
responses. In the second (~FI,LC) experiment, only the 
learning capability was enabled. This resulted in 
performance as poor as the lobotomized muzzes, which is 
a stark testimony to the importance of having some tactics 
available to engage the environment. The next experiment 
(FI,~FC) indicates what a powerful effect the few simple 
instincts alone had on task success. 
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Figure 6. 4x4 World performance 
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Figure 7. 8x8 World performance 
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Figure 8. 12x12 World performance 

 
The next experiment (~FI,LE) was interesting and 

somewhat unexpected. Here instincts and learning were 
enabled and the world foraged. For the test, foraging 
instincts were disabled and learning experience alone 
enabled. The result is comparable performance to 
foraging instincts alone. On closer observation, it appears 
that not only were a number of environmental paths 
learned, but that foraging itself was learned: the muzzes 
moved about with exploratory movement patterns. In the 
last experiment, the synergistic benefit of instinct and 
experiential learning was striking, cutting the time to find 
food and water approximately in half relative to either 
alone. Looking closer at a number of trials, especially in 
the 12x12 world, foraging appears to serve to get the 

muzz on to a learned pathway, whereupon learned 
behavior can activate to take the muzz directly to a goal. 

The Q-Learning  performance was unexpectedly poor. 
Not only was learning experience running without 
foraging instincts highly ineffective in all three world 
dimensions, but in the 8x8 and 12x12 worlds it actually 
hindered the effectiveness of foraging instincts. While it 
was expected that Q-Learning would in some instances be 
confounded by redundant sensory states within a goal 
path and by the three-way vying for control between 
instincts and the two goal-specific Q-Learning processes, 
the extent of the degradation was surprising. 
 
4. Conclusion 
 

The use of a few basic hard-wired neurons, tuned by 
evolution, has been shown to radically improve foraging 
performance. Moreover, the superiority of the 
instinct/learning synergy suggests that more ambitious 
studies are warranted.  For example: 
 

• In order to more closely mimic nature, an 
environment might be constructed that contains 
generalities related to foraging, such as a certain 
type of fruit that grows in proximity to 
environmental cues, such as odors or terrain 
markings. Then creatures might learn more 
generalized patterns related to resource 
acquisition.  

• The addition of manipulable objects in the 
environment could be used to study such 
behaviors as nest-building. 

• The addition of other creatures could be used to 
study social behaviors such as predator/prey 
strategies. 

• The embodiment of the creatures in simple 
physical robots would create an opportunity to 
mesh other fields such as pattern recognition and 
kinematics with the neural network. 

 
As a final note, the utility of uniquely identifying each 

neuron with an MD5 hash to prevent duplication during 
mating should be underscored. What it means is that any 
two neurons in different networks having the same id are 
recursively structurally identical. One of Mona’s design 
goals is to address the critical problem of non-modularity 
in classical feed-forward networks [8] by being able to 
configure neurons that do specific jobs, something that 
biological neurons are also capable of. Imagine the 
possibilities of exchanging and even sharing neurons 
between networks, something that nature does not design 
for.  

The C++/OpenGL source code for Mona and the muzz 
world are available at: 



www.itk.ilstu.edu/faculty/portegys/research/muzz/muzz.z
ip (zip) or muzz.tgz (tarball). 
It can be compiled with either gcc/make or Microsoft 
Visual Studio .NET. 
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