M anaging Flocking Objects with an Octree Spanning a Par allel M essage-Passing
Computer Cluster

Thomas E. Portegys, Kevin M. Greenan
Illinois State University
portegys@ilstu.edu, kmgreen2@il stu.edu

Abstract

We investigate the management of flocking mobile
obeds usng a paallel message-passng computer
cluster. An octree a daa structure well-knoan for use
in managng a D space, is adaped to “spar’ the
cluster. Objeds are distributed in the tree and patitions
of the treeare distributed among the processors in such
a way that a minimum of globd information is required
to be shared by the procesors. When oljeds move, the
tree is modified accordingly; this in turn may cause
partitions to migrate processors. Two congraints drive
the distribution dgorithm: (1) minimizing message traffic
by dustering rearby objeds on the same procesor, and
(2) procesr loadbaancing. Boids, flocking atificial
life forms, embody the objeds in this gudy. The
performance of the system is measured in terms of the
inter-procesor message traffic as a function d the
number, interactivity, and mobility of obeds. An
appication d the scheme all ows externa clients to view
objedsin spedfied spatial loci.

Keywords: message-passng parallel computer, octree
flocking behavior, boids.

1. Introduction

Many systems involve large numbers of mohile and
spatially related components. Examples include
smulating moleaular changes in chemical reactions,
weather modeling, air and fluid dynamics, population
modeling, forest fire simulation, and networked gaming.
These systems require the sort of massve omputational
power that parallel processors can provide in an
emnomical fashion.

We dhose a message-passng parallel computer cluster
as our platform. Message-passng machines are typically
less efficient than shared-memory processors for tasks
involving relatively small numbers of tightly conneded
obeds, and in turn show superior performance and
scaling for tasks involving large numbers of loosely
coupled objeds [8]. One of the aims of this projed isto
investigate the mnditions under which the use of a
message-passng system is effedive. To this end, we

measure the performance of the system in terms of the
inter-procesr messge traffic as a function of the
number of objeds and their mohility.

A number of investigations of N-body tasks on
message-passng parale clusters appear in the literature
[3,4,7]. In our study, bods [6], flocking artificia life
forms, are used as test ohjeds. A boid moves about in a
swarming fashion that requires knowledge other baids in
its vicinity. This produces group flocking movements that
are daracteristic of animal and human behavior in
contrast to typical N-body movements caused by force
fields. The movement of flocks across processor
boundaries provides an opportunity to study the
processng and message-passng capabilities of the
system, as well asto investigate the dfedivenessof load-
balancing.

1.1. Spanning octree

An octree a data structure well-known for use in
managing 3D space is adapted to “span” the duster. In
our octreg space is reaursively divided into smaller and
cubic partitions such that terminal cubes usually contain
a single ohed. The treeis partitioned by orthogonally
biseding space and assgning volumes to each processor
in the form of bounds. Figure 1 depicts a 2D (quadtred
view of a tree spanning a space ontaining a number of
obeds.

:jr' global

PO P1 P2 P3

® = Object

Figure 1. Initial Spanning Tree

In the figure, the partition bounds are globelly known
to processors PO through P3. This is acoomplished by
repli cating the bounds that each procesor has its own
copy. The goal isto provide a fast determination of which
partitions of the octree are managed by which processor
so that ohjeds in the @rresponding volumes of space @n
be accessed. Each procesor manages a single volume of
space and the objeds that it contains. The spedfic detail s
of the objeds in these local spaces, including the
configurations of the sub-trees that track them, are
known only to each processor.

1.2. Migrating objects

Figure 2 shows objeds O1 and O2 migrating to the
space owned by procesor P3. This involves a a
minimum messages from P2 to P3 to insert the migrating
obeds in the target space P2 then deletesits copy of the
obeds.

global

04
o1 _

02

PO P1 P2 P3

Figure 2. Migrating objects

1.3. L oad-balancing

Two constraints drive the distribution algorithm: (1)
minimizing message-passng by clustering nearby objeds
on the same procesor, and (2) procesor load-balancing.
Figure 3 shows the result of load-balancing that has
caused the global space to be repartitioned as a result of
the migration of objeds O1 and O2. This has caused the
redistribution of objeds O3 and O4 to P2, and forced an
updete to the global bounds. We use a variation of an
orthogonal rearsive bisedion agorithm [5] to partition
space

:f- global

o1
03

02
04

PO P1 E2: P3

Figure 3. Repartitioned space
1.4. Object interaction

In contrast with typical N-body systems, a boid does
not often interact with every other bad. A bod's
movement depends only on the movements and positions
of nearby bads. Because of this, a straightforward octree
search is aifficient to implement efficient proximity
chedking, as opposed to using a cumulative scheme such
as the multi pole method [1,2].

Figure 4 illustrates a stuation in which obeds O1
and O3 reside in space managed by processor PO, and
obed O2 resides in space managed by Pl. Consider
proximity chedking for O1. In the @se of an O1-O3
interaction, the deding can be eitirely local to PO.
However, since O1 extends into space owned by P1, and
the mntents of this gace are unknown to PO, a message
to P1 must be sent containing O1's position so that P1
may conduct the proximity cheding in itslocal space

Message

—

PO P1

Figure 4. Proximity checking

1.5. Viewports

An application of the scheme allows external clients
to view obeds in spedfied spatia loci. This is
acoomplished by designating one of the processors as a
viewport gateway. Alternatively, a dedicated machine
may perform the gateway function. Clients conneding to
the gateway spedfy a viewing frustum, which is
esentialy a bounding box. The gateway then makes
appropriate searches on the various processrs to oltain
information about objeds contained in the viewing
frustum. A list of these is returned to the dient, alowing
agraphical view of avolume of spaceto be rendered.

2. Procedure

Our platform is the Applied Computer Science
Department’'s Beowulf machine, a cluster of 16 SUN
Ultra 10 workstations running SuSe Linux, conneded by
a 10mbps Ethernet. The software is the C++
programming language and PVM (Pardld Virtua
Machine) to provide the message-passng infrastructure.
The OpenGL graphics language is used to exercise the
viewport feature.

The partition algorithm requires that the number of
procesors be a power of 8, yet for obvious reasons thisis
not a practically achievable machine @nfiguration. The
solution was to implement procesors as virtual entities
and ddtribute processors among physical machines in a
clustered manner.

The boids code was initi ally obtained from an internet
source After a measure of re-writing and parameter
tuning we obtained satisfactory flocking behavior: a
variety of dynamically changing flock sizes.

A PVM program is a master-dave process
configuration. Our master process Pawned dave
proceses representing virtual procesors on spedfied
machines, initializing them with their bounds and a
random distribution of baids.

Updating processor bounds for load-balancing is done
by the master using information from the dave
procesrs. Each procesor reports its current load
(number of baids) and the position of the median baoid.
The master then re-partitions based on these weighted
boid positions.

After initialization, the master enters a logp, an
iteration of which congtitutes the foll owing cycle:

1. Broadcast an aim messge to dave procesors
causing them to determine the next position of each
boid. This entail sintra-processor and crossprocessor
searches not involving the master.

2. Broadcast a move message, causing procesors to
move bads to their new positions, possbly involving
crossprocesr insertions and deletions, aso not
involving the master. Insertions are unacknowl edged
for efficiency reasons.

3. If load-balancing, broadcast a report messge,
causing the procesors to send back their load and
median information. The master computes new
bounds and broadcasts them in a balance message.

4. If gathering statistics, broadcast a stats messages and
gather results.

5. If in viewing mode, broadcast the viewing planes in
a view message and gather the results. Each
procesor determines which searches its octree for
baids falli ng within the viewing box.

The oscle steps are synchronized; each step is
completed before moving to the next. This meansthat the
master waits for al procesors to respond before isaing
the next command. This can only happen after all
searching and insertion activity for a particular step is
completed by the daves.

The viewing capability is implemented as a separate
thread within the master process This alows a user to
navigate through space seledively viewing bads, or to
run in non-interfering “blind” mode.

3. Reaults

Figure 5 is a graphical depiction of a smulation of
the system. Here, a number of mohile point ohjeds are
shown in their octreevolumes.

Figur 5. Octree smulation

The independent variables were: number of boids (25,
50, 100, 200), number of machines (4, 8), and load-
balancing (on/off). Unfortunately, due to hardware
problems we were not able to use the entire 16 processor
cluster. The dependent variables for which data was
gathered were: load (boids) per machine and message
traffic. Each trial was run for 1000 cycles. The boids had
an interaction range of 5 units. As the number of boids
increased, the spatial dimension were increased: 25 boids
in a 15x15x15 volume, 50 in 20x, 100 in 25x, and 200 in
30x.

Figures 6 and 7 show the average and standard
deviation boid load for 8 and 4 machine configurations,
respectively, under no load-balancing (NLB), and load-
balancing (LB) conditions. The flocking aspect of the
boids can be seen in the non-uniform distribution
indicated by the standard deviation.

30 7

)
[&)]
\0

£20
= a ——Awe.
© 5
=15 > A —&—NLB Sdev.
s /I// ---®-- 1B Sdev.
410 ‘a
=]
® /'///
0
25 50 100 200
Total Boids

Figure 6. Load for 8 machines

[o>]
(=)
I

N

[
B
(=)

ﬁ ——Aw.
=30 —=— NLB Sdev.
[

a /’/ /. ~--m-- LB Sdev.
420

[=]

3

o

25 50 100 200
Total Boids

Figure 7. Load for 4 machines

Figures 8 and 9 show the message traffic for the 8 and
4 machine configurations. Notable here is the effect of
load-balancing, which causes a significant decrease in
message traffic, although not a correspondingly large
decrease in burstiness as indicated by the standard
deviation.

2500 1
2000 /
1500 . ——NLB Ave.
g ---¢-- LB Ave.
2 —=—NLB Sdev.
< 1000 -
. ---m-- B Sdev,
500
0

25 50 100 200
Boids

Figure 8. Message traffic for 8 machines

4000 7

3500 /
3000 5
2500 - ——NLB Ave.
= -4 LB Ave.
2000
2 —®—NLB Sdev.
= 1500 --m-- 1B Sdev
1000
500
0
2% 50 100 200
Boids

Figure 8. Message traffic for 4 machines

4. Conclusion

The overall observation is that load-balancing can be
effedive in reducing message traffic for flocking objeds.
The st for this improvement in our scheme is an
additional 2 stepsin the processng cycle.

For future work, we propose to investigate
decentralized load-balancing schemes to avoid the
overhead cogt. In addition, processor load could consist
of factors other than smple numbers of objeds. For
example, the state of objeds may be a viable factor. In a
forest fire simulation, burning areas would take more
computation resources, and thus these ohjeds might
“weigh” more heavily. In addition, in a cluster of
heterogeneous processors, the resources of each processor
could be taken into acoount for |oad-balancing.

The modeis avail able at:
www.acs.il stu.edu/faculty/portegys/research.html

5. Acknowledgements

The authors wish to espedally thank Chris McBride
for many valuable ideas and contributions. Thanks also
to Andy Thayer and Tesh Shah for their insights.

6. References

[1] Anderson, C. R., “An implementation of the fast
multi pole method without multipoles’, SIAM J. Sci. Stat.
Comput. 13 (1992 923

[2] Greengard, L. Gropp, W.L., "A Paralld version of the
Fast Multi pole Method", Parallel Processng for

Scientific Computing SIAM Conference proceadings,
p213222 1988

[3] Hariharan, B. and Aluru, S., “Efficient Parall €
Algorithms and Software for Compressed Octrees with
Applications to Hierarchical Methods’, High
Performance Computing - HiPC 2001 &h International
Conference, Hyderabad, India, Decanber, 17-20, 2001
Procealings.

[4] Hu, Y., “Implementing O(N) N-body algorithms
efficiently in data parall el languages (High Performance
Fortran)”, Journal of Scientific Programming, 1994

[5] Salmon, JK., “Parallel Hierarchical N-Body
Methods’, Ph.D. thesis, California Institute of
Tedhnology, 199Q

[6] Scientific American: Feature Article: “Boids of a
Feather Flock Together”, November 200Q

[7] Sun Y., Liang, Z., and Wang, C-L, “A Distributed
Objed-Oriented Method for Particle Simulations on
Clusters’, Procealdings of the 7th International
Conference on High Performance Computing and
Networking (HPCH Europe 1999, April 12-14, 1999
Amsterdam, The Netherlands, 1999

[8] Wilkinson, B. and Allen M., “Parale Programming,
Tedhniques and Appli cations Using Networked
Workstations and Parallel Computers’, Prentice-Hall
Inc., 1999

